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a b s t r a c t 

This paper presents a finite volume scheme on structured grids to simulate shallow flows over complex terrain. 

The situation of shallow downhill flow over a step is particularly challenging for most shallow water schemes. We 

study this situation in detail and devise a novel second-order reconstruction strategy, which gives superior results 

over former hydrostatic reconstruction (HR) schemes. The reconstruction step is based on a recent first-order 

hydrostatic reconstruction HR method, which improves shallow flows over steps. The proposed second-order 

scheme is well-balanced, positivity-preserving, and handles dry cells. When compared with the original HR, we 

lower the computational burden by using a simplified quadrature for the bed slope source term. We test the 

scheme on various benchmark setups to assess accuracy and robustness, where the method produces comparable 

results to other HR-based schemes in most cases and superior results in the case of shallow downhill flow over 

steps. The novel second-order scheme is capable of simulating large-scale real-world flood scenarios fast and 

accurately. 

1

 

c  

a  

a  

B  

2  

s  

r  

W

 

f  

h  

c  

e  

e  

g  

2  

A

a

m  

e  

(  

C  

p  

a  

w  

t  

e  

s  

t  

 

r  

A  

–  

i  

F  

L  

n  

h

R

A

0

. Introduction 

The shallow water equations (SWEs) describe the motion of an in-

ompressible fluid under the gravitational force. They provide plausible

nd reliable results of water levels for tsunamis, river floods, dam breaks,

nd levee breaches ( de la Asunción et al., 2013; Audusse et al., 2004;

rodtkorb et al., 2012; Hervouet and Petitjean, 1999; Liang and Marche,

009; Russo, 2005 ). Based on the assumption that the horizontal length

cale is large compared to the vertical length scale, the SWEs can be de-

ived by depth averaging the Navier–Stokes equations ( Temam, 1984;

hitham, 1999 ). 

The finite volume method (FVM) is a common numerical method

or solving the SWEs. For the spatial discretization, a computational grid

as to be chosen. Unstructured triangular meshes are able to incorporate

omplex geometries, however they require time-consuming mesh gen-

ration. In contrast, rectangular grids lack the pre-processing step at the

xpense of poor resolution of topographic features not aligned with the

rid. This issue can be overcome with the cut-cell technique ( An and Yu,

012; Ingram et al., 2003 ). Furthermore, in the context of second-order
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ethods, slope reconstruction on unstructured grids has a great influ-

nce on the solution quality, thus making it harder to compare schemes

 Buffard and Clain, 2010; Hou et al., 2014 ). Also, numeric models on

artesian grids are easier to implement and faster than their counter-

arts on unstructured grids. They are suitable for straightforward par-

llelization on graphics processing units (GPUs) due to their simplicity,

hich reduces computation times by a factor of up to 100 compared

o conventional programming models ( Brodtkorb et al., 2012; Horváth

t al., 2016; Vacondio et al., 2016 ). For temporal evolution, usually a

trong-stability-preserving Runge–Kutta method is employed, such as

he second-order Heun’s method ( Bouchut, 2007; Gottlieb et al., 2001 ).

A stable and efficient way to solve the SWEs are schemes de-

ived by the hydrostatic reconstruction (HR) method, developed by

udusse et al. (2004) . The superior stability properties of this scheme

it is positivity preserving, well-balanced and satisfies a semi-discrete

n-cell entropy inequality – contributed to its popularity ( Berthon and

oucher, 2012; Castro et al., 2007; Clain et al., 2016; Hou et al., 2013a;

iang and Marche, 2009; Noelle et al., 2006 ). The HR scheme in combi-

ation with a kinetic solver satisfies a fully discrete entropy inequality
anagement, Vienna University of Technology, Karlsplatz 13/222, 1040 Vienna, 
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ith an error term coming from the topography ( Audusse et al., 2016 ).

hus, convergence of this scheme can be expected for Lipschitz contin-

ous bathymetry. 

In first-order and second-order finite volume (FV) schemes the bot-

om topography is approximated by piecewise constant and piecewise

inear functions, respectively, thus giving rise to discontinuities in the

ottom at the discrete level. In practice, large discontinuous bottom

teps may occur at coarse spatial resolutions or in stormwater scenarios,

here the water layer is often thinner than the stepsize of the bottom

umps. As bottom steps appear at the discrete level of FVMs, there is

 need to stretch the applicability of the SWEs also to cases involving

iscontinuous bathymetries. This leads to mathematical and numerical

roblems, since then the product of the depth and the bottom gradient

annot be understood in a distributional sense. The mathematical theory

f nonconservative products in the source term is an active field of re-

earch ( Dal Maso et al., 1995 ). Even if discontinuous bathymetries are

ot within the theoretical assumptions of the SWEs, Morales de Luna

t al. (2013) note that the SWEs still give reasonable results in the case

f small enough bottom jumps. Altogether, this motivates the study of

hallow water flows over bottom steps and their numerical approxima-

ion. 

In the case of shallow downhill flow, the original first-order HR

cheme does not properly account for the acceleration due to a sloped

ottom ( Delestre et al., 2012 ). This effect can be mitigated by switch-

ng from a first-order to a second-order approximation. Morales de Luna

t al. (2013) improve the original first-order HR scheme in the case of

artially wet interfaces. Recently, Chen and Noelle (2017) proposed a

ew reconstruction which features an even better approximation of the

ource term in case of shallow downhill flows, leading to a new first-

rder scheme, called the CN scheme in this work. Also they present a

ay to investigate and derive the two existing HR schemes by means

f subcell reconstructions. In Xia et al. (2017) , Xia et al. present a Sur-

ace Reconstruction Method (SRM) to overcome the problem of partially

et interfaces, which they describe by the term “waterfall effect ”. In

heir first-order scheme, a second-order approximation of the bottom

s used in all cells to reconstruct the water surface and the bottoms at

he interfaces for the flux and source term computation. Other strate-

ies to further improve the flow over abrupt topography include con-

idering the conservation of the total head instead of the conservation

f the hydrostatic equilibrium. Such schemes are also called energy-

alanced methods and typically require additional waves in the approx-

mate Riemann solver (ARS) to resolve the stationary bottom disconti-

uity at the interface. This leads to additional complexity in the solver,

oth implementation-wise and performance-wise ( Goutal et al., 2017;

eFloch and Thanh, 2011; Murillo and García-Navarro, 2010; 2013;

urillo and Navas-Montilla, 2016 ). 

Another numerical difficulty arises at wet-dry zones, characterized

y interfaces between dry and wet cells. A robust numerical scheme

hould be able to maintain nonnegativity of water depth, but should

lso avoid unphysically high velocities in these sensitive regions. Typ-

cally, at wet-dry zones, the wet cells only feature a thin layer of wa-

er thus giving rise to large velocities when the discharge is divided

y a small depth. Different methods are tailored to tackle this prob-

em ( Horváth et al., 2015; Hou et al., 2013b ). In Hou et al. (2013b) , a

ovel source treatment, which is slightly faster than the original source

erms as in Audusse et al. (2004) , for unstructured grids is introduced. 

In this paper, we present a new two-dimensional scheme, which is

econd-order accurate. It is based on the hydrostatic reconstruction pro-

edure of Chen and Noelle (2017) . The second-order accuracy allows

s to reduce the discretization error and perform more accurate simu-

ation runs. We apply a simple source treatment, which is computation-

lly efficient and leads to a minor loss of accuracy in typical use cases.

urthermore, our proposed reconstruction is adapted to limit the veloc-

ties, which reduces the occurrence of unphysically high velocities, and

o correctly reconstruct the solution variables in the vicinity of abrupt

hanges in the bottom topography and in the water levels. In particular,
90 
ur method is able to capture the drying process in regions with com-

lex terrain in a robust and efficient way. This approach ensures that the

ime step, which is connected to the velocities by the Courant-Friedrichs-

ewy (CFL) condition, is not overly restricted when simulating large

ime spans. Our proposed source term approximation coincides with the

imple and economical source term of Hou et al. (2013b) in fully wet

egions. For shallow flow over abrupt topography, the novel scheme out-

erforms previous schemes based on the HR method. We remark again

hat discontinuous bottom steps are not within the theoretical assump-

ions on the derivation of the shallow water (SW) model, however, they

ppear by construction in first-order and second-order FVMs. Thus, the

orrect handling of bottom steps in the numerical approximation, in-

luding the reconstruction procedure as well as the source term dis-

retization, is important. We propose to reconstruct the HR water depth

rom bottom slopes instead of water level slopes in regions where the to-

ography changes abruptly. This novel “adaptive ” second-order recon-

truction allows us to significantly increase accuracy of shallow flow

own a bottom step, when compared to other second-order HR-based

chemes. 

The paper is organized as follows. In Section 2 , we discuss the model

quations, the HR schemes and present the second-order scheme based

n a new HR ( Chen and Noelle, 2017 ) in detail. In Section 3 , we present

umerical experiments highlighting the advantages and disadvantages

f our proposed scheme. We extensively verify the presented scheme

n multiple benchmark tests, including a dam break over bottom steps,

even Riemann problems, the parabolic bump, and the parabolic basin.

e validate the scheme on the Malpasset dam break and a river flood

vent. Finally, in Section 4 , we conclude the findings of this work and

ive a brief outlook into future works. 

This paper contributes with the following key points: 

• a two-dimensional well-balanced scheme based on an improved hy-

drostatic reconstruction 
• a novel second-order reconstruction which yields superior results for

shallow downhill flows over a step, 
• an economical approximation of the source term to speed up com-

putation, 
• reduction of unphysically high velocities at wet-dry zones. 

. Model equations and numerical methods 

.1. The shallow water equations 

In this section, we describe the shallow water model and the finite

olume method (FVM) for SW schemes. The hyperbolic conservation

aw described by the two-dimensional shallow water equation (SWE),

lso referred to as the Saint-Venant system, with geometric source term

an be written as 

 

 

 

 

 

ℎ 

ℎ𝑢 

ℎ𝑣 

⎤ ⎥ ⎥ ⎥ ⎦ 𝑡 
+ 

⎡ ⎢ ⎢ ⎢ ⎣ 
ℎ𝑢 

ℎ𝑢 2 + 

1 
2 𝑔ℎ 

2 

ℎ𝑢𝑣 

⎤ ⎥ ⎥ ⎥ ⎦ 𝑥 
+ 

⎡ ⎢ ⎢ ⎢ ⎣ 
ℎ𝑣 

ℎ𝑢𝑣 

ℎ𝑣 2 + 

1 
2 𝑔ℎ 

2 

⎤ ⎥ ⎥ ⎥ ⎦ 𝑦 
= 

⎡ ⎢ ⎢ ⎢ ⎣ 
0 

− 𝑔ℎ𝑏 𝑥 

− 𝑔ℎ𝑏 𝑦 

⎤ ⎥ ⎥ ⎥ ⎦ , (1)

here h represents the water height, hu is the discharge along the x -axis,

v is the discharge along the y -axis ( Fig. 1 a), u and v are the average

ow velocities in x and y -direction respectively, g is the gravitational

onstant, and b is the bathymetry (assumed to be time-independent).

ubscripts represent partial derivatives, e. g., U t stands for 𝜕𝐔 
𝜕𝑡 

. In vector

orm the system writes 

 𝑡 + 𝐅 ( 𝐔 , 𝑏 ) 𝑥 + 𝐆 ( 𝐔 , 𝑏 ) 𝑦 = 𝐒 ( 𝐔 , 𝑏 ) , (2)

here 𝐔 = [ ℎ, ℎ𝑢, ℎ𝑣 ] 𝑇 is the vector of conserved variables, F and G are

ux functions. The bed slope term S models the fluid’s acceleration due

o the gravitational forces. An additional friction term S f ( U ) can be in-

luded on the right hand side of (2) , which is introduced in Section 2.10 .

In two dimensions, the SWEs allow for complicated steady state solu-

ions, however we restrict ourselves to two important steady-state equi-
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Fig. 1. Schematic one-dimensional view of a shallow water flow, definition of 

the variables, and flux computation. a) Continuous variables. b) The conserved 

variables 𝐔 = [ ℎ, ℎ𝑢, ℎ𝑣 ] 𝑇 are discretized as cell averages U j,k on the cell C j,k . c) 

Left- and right-sided point values 𝐕 𝑗+1∕2∓ ,𝑘 are reconstructed at the cell interface 

𝐼 𝑗+1∕2 ,𝑘 . d) Fluxes F are computed using the HLL flux at the cell interfaces. 
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ibria. Following Chen and Noelle (2017) , there is the still-water equilib-

ium, i. e., 

, 𝑣 = 0 and ∇ 𝑤 = 0 , (3) 

here w denotes the water level 𝑤 = ℎ + 𝐵, and the lake at rest equilib-

ium, which includes dry shores, i. e., 

𝑢, ℎ𝑣 = 0 and ℎ ∇ 𝑤 = 0 . (4) 

f a numerical scheme is capable of balancing source and numerical flux

erms for these two stationary solutions it is called well-balanced and

hus preserves the lake at rest and also the still-water equilibrium. 

.2. Discretization 

We choose a uniform grid x 𝛼 ≔ 𝛼Δx and y 𝛽 ≔ 𝛽Δy , where Δx and

y are the cell sizes. We denote by C j,k the cell 𝐶 𝑗,𝑘 ∶= [ 𝑥 𝑗−1∕2 , 𝑥 𝑗+1∕2 ] ×
 𝑦 𝑘 −1∕2 , 𝑦 𝑘 +1∕2 ] . The SWEs are discretized by the method of lines. The

VM is chosen for the spatial discretization on top of the uniform grid.

n FVM discretizes the conserved variables U as cell averages, e. g., U j,k 

or the finite volume C j,k . This yields a system of ordinary differential

quations for the cell averages 

𝑑 

𝑑𝑡 
𝐔 𝑗,𝑘 ( 𝑡 ) = − 

𝐅 
𝑗+ 1 2 ,𝑘 

( 𝑡 ) − 𝐅 
𝑗− 1 2 ,𝑘 

( 𝑡 ) 

Δ𝑥 
− 

𝐆 

𝑗,𝑘 + 1 2 
( 𝑡 ) − 𝐆 

𝑗,𝑘 − 1 2 
( 𝑡 ) 

Δ𝑦 
+ 𝐒 𝑗,𝑘 ( 𝑡 ) , (5)

here 𝐅 
𝑗∓ 1 2 ,𝑘 

and 𝐆 

𝑗,𝑘 ∓ 1 2 
are the discretized interface fluxes and S j,k is

n appropriate source term discretization. 

.3. Hydrostatic reconstruction 

To achieve well-balancedness, it is necessary to introduce a spe-

ial reconstruction for the Riemann states that are fed into the ap-

roximate Riemann solver. Assuming time-independent bathymetry val-

es b j,k ≔ b ( x j , y k ) at the cell centers, the essential idea of the hydro-

tatic reconstruction (HR) technique is to redefine the interface bottom

alues used for deriving the Riemann states in order to ensure well-

alancedness and positivity. The name HR method originates from the

act that the associated HR scheme balances the hydrostatic pressure and
91 
he topographic source terms at each interface in the still water steady-

tate. We illustrate the technique only in x -direction, the application to

he y -direction can be done analogously. 

In the following, we briefly summarize the original first-order HR of

udusse (Aud) ( Audusse et al., 2004 ) and the modification of Chen and

oelle (CN) ( Chen and Noelle, 2017 ). In both first-order schemes, there

s only one hydrostatically reconstructed bathymetry value at each in-

erface. The original first-order HR evaluates the interface bottom values

 

∗ in an upwind fashion ( Audusse et al., 2004 ), 

 

∗ , Aud 

𝑗+ 1 2 ,𝑘 
= max 

(
𝑏 𝑗+1 ,𝑘 , 𝑏 𝑗,𝑘 

)
. (6)

he left- and right-sided interface heights with respect to the interface

 𝑗+1∕2 ,𝑘 between cell C j,k and 𝐶 𝑗+1 ,𝑘 are then defined as 

 

∗ , Aud 

𝑗+ 1 2 − ,𝑘 
( 𝑡 ) = max 

( 

𝑤 𝑗,𝑘 ( 𝑡 ) − 𝑏 
∗ , Aud 

𝑗+ 1 2 ,𝑘 
, 0 
) 

, 

 

∗ , Aud 

𝑗+ 1 2 + ,𝑘 
( 𝑡 ) = max 

( 

𝑤 𝑗+1 ,𝑘 ( 𝑡 ) − 𝑏 
∗ , Aud 

𝑗+ 1 2 ,𝑘 
, 0 
) 

. (7) 

his definition ensures the nonnegativity of the water depths h . 

The CN scheme ( Chen and Noelle, 2017 ) improves the original recon-

truction on partially-wet cases where an adjacent water level is lower

han the bottom topography, i. e. 

 

𝑗+1∕2 ,𝑘 ( 𝑡 ) ∶= min 
(
𝑤 𝑗,𝑘 ( 𝑡 ) , 𝑤 𝑗+1 ,𝑘 ( 𝑡 ) 

)
< 𝑏 

∗ , Aud 

𝑗+ 1 2 ,𝑘 
. (8) 

he CN scheme defines the interface bottom values b ∗ as 

 

∗ , CN 

𝑗+ 1 2 ,𝑘 
( 𝑡 ) = min 

( 

𝑏 
∗ , Aud 

𝑗+ 1 2 ,𝑘 
, 𝑤 

𝑗+ 1 2 ,𝑘 
( 𝑡 ) 
) 

. (9) 

he interface heights h ∗ are given by 

 

∗ , CN 

𝑗+ 1 2 − ,𝑘 
( 𝑡 ) = min 

( 

𝑤 𝑗,𝑘 ( 𝑡 ) − 𝑏 
∗ , CN 

𝑗+ 1 2 ,𝑘 
( 𝑡 ) , ℎ 𝑗,𝑘 ( 𝑡 ) 

) 

, 

 

∗ , CN 

𝑗+ 1 2 + ,𝑘 
( 𝑡 ) = min 

( 

𝑤 𝑗+1 ,𝑘 ( 𝑡 ) − 𝑏 
∗ , CN 

𝑗+ 1 2 ,𝑘 
( 𝑡 ) , ℎ 𝑗+1 ,𝑘 ( 𝑡 ) 

) 

. (10) 

or a constant water level W , the interface depths are then continuous

cross interfaces, that is 

ax 
( 

𝑊 − 𝑏 
∗ , Aud 

𝑗+ 1 2 ,𝑘 
, 0 
) 

= ℎ 
∗ , Aud 

𝑗+ 1 2 − ,𝑘 
= ℎ 

∗ , Aud 

𝑗+ 1 2 + ,𝑘 
= max 

( 

𝑊 − 𝑏 Aud 

𝑗+ 1 2 ,𝑘 
, 0 
) 

. (11) 

he continuous depths then make it easy to show well-balancedness

or consistent fluxes, see Section 2.9 . We remark that the hydrostatic

nterface heights h ∗ of the two first-order schemes do not differ, only the

R interface bathymetry values differ in partially wet cells ( Chen and

oelle, 2017 ), compare also Fig. 2 . 

.4. Second-order reconstruction 

For second-order accuracy, left- and right-sided point values have to

e computed at the cell interface midpoints through slopes taking into

ccount the neighbouring values. The left-sided point values of a cell

 j,k are then denoted by subscripts 𝑗 − 1∕2+ and 𝑘 − 1∕2+ in x - and y -

imension, respectively. We reconstruct 𝐕 = [ ℎ, 𝑢, 𝑣, 𝑤 ] 𝑇 instead of the

onserved variables ( Audusse et al., 2004; Bouchut, 2007 ). From now

n, we omit time dependence in the equations, since all reconstructed

ariables are time-dependent. To suppress unphysical oscillations, the

eneralised minmod-limiter is applied to the slopes ( Nessyahu and Tad-

or, 1990; Sweby, 1984; Van Leer, 1979 ) 

 𝑥 𝐕 𝑗,𝑘 = minmod 
( 

𝜃
𝐕 𝑗,𝑘 − 𝐕 𝑗−1 ,𝑘 

Δ𝑥 
, 
𝐕 𝑗+1 ,𝑘 − 𝐕 𝑗−1 ,𝑘 

2Δ𝑥 
, 𝜃

𝐕 𝑗+1 ,𝑘 − 𝐕 𝑗,𝑘 

Δ𝑥 

) 

, 

D 𝑦 𝐕 𝑗,𝑘 = minmod 
( 

𝜃
𝐕 𝑗,𝑘 − 𝐕 𝑗,𝑘 −1 

Δ𝑦 
, 
𝐕 𝑗,𝑘 +1 − 𝐕 𝑗,𝑘 −1 

2Δ𝑦 
, 𝜃

𝐕 𝑗,𝑘 +1 − 𝐕 𝑗,𝑘 

Δ𝑦 

) 

, 

(12) 
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Fig. 2. First-order hydrostatic reconstruction in the case 

of shallow flow over discontinuous bottom. Water levels 

w are shown as blue lines and the bathymetry is visual- 

ized in gray. At the right partially wet interface, Audusse’s 

scheme gives interface bathymetry values b ∗ ,Aud , which are 

different to the values b ∗ ,CN provided by the CN scheme. 

The HR interface bathymetry values are marked with red 

asterisks. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version 

of this article.) 
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here 𝜃 between 1 and 2. The minmod limiter is given by Nessyahu and

admor (1990) 

inmod ( 𝑎, 𝑏, 𝑐) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
min ( 𝑎, 𝑏, 𝑐) if 𝑎, 𝑏, 𝑐 ≥ 0 , 
max ( 𝑎, 𝑏, 𝑐) if 𝑎, 𝑏, 𝑐 ≤ 0 , 
0 otherwise 

(13)

he value of 𝜃 controls the amount of dispersion added to the system

nd is chosen to be 1.3 in our simulations. This choice of slope limiting

onserves the maximum principle. The left- and right-sided water depth

oint values are given by 

 

𝑗− 1 2 + ,𝑘 
= ℎ 𝑗,𝑘 − 

Δ𝑥 
2 

D 𝑥 ℎ 𝑗,𝑘 , ℎ 𝑗,𝑘 − 1 2 + 
= ℎ 𝑗,𝑘 − 

Δ𝑦 
2 

D 𝑦 ℎ 𝑗,𝑘 , 

 

𝑗+ 1 2 − ,𝑘 
= ℎ 𝑗,𝑘 + 

Δ𝑥 
2 

D 𝑥 ℎ 𝑗,𝑘 , ℎ 𝑗,𝑘 + 1 2 − 
= ℎ 𝑗,𝑘 + 

Δ𝑦 
2 

D 𝑦 ℎ 𝑗,𝑘 , (14)

nd the left- and right-sided water level point values by 

 

𝑗− 1 2 + ,𝑘 
= 𝑤 𝑗,𝑘 − 

Δ𝑥 
2 

D 𝑥 𝑤 𝑗,𝑘 , 𝑤 

𝑗,𝑘 − 1 2 + 
= 𝑤 𝑗,𝑘 − 

Δ𝑦 
2 

D 𝑦 𝑤 𝑗,𝑘 , 

 

𝑗+ 1 2 − ,𝑘 
= 𝑤 𝑗,𝑘 + 

Δ𝑥 
2 

D 𝑥 𝑤 𝑗,𝑘 , 𝑤 

𝑗,𝑘 + 1 2 − 
= 𝑤 𝑗,𝑘 + 

Δ𝑦 
2 

D 𝑦 𝑤 𝑗,𝑘 . (15)

.4.1. Velocity reconstruction 

According to Bouchut (2007) , we reconstruct velocities [ 𝑢, 𝑣 ] =
 ℎ𝑢 ∕ ℎ, ℎ𝑣 ∕ ℎ ] instead of discharges hu, hv to avoid high velocities near

ry cells. To satisfy the conservativity requirement dimension-wise on

he discharges, the point values have to satisfy 

𝑢 𝑗,𝑘 = 

1 
2 

( 

ℎ 
𝑗− 1 2 + ,𝑘 

𝑢 
𝑗− 1 2 + ,𝑘 

+ ℎ 
𝑗+ 1 2 − ,𝑘 

𝑢 
𝑗+ 1 2 − ,𝑘 

) 

, (16)

nd 

𝑢 𝑗,𝑘 = 

1 
2 

( 

ℎ 
𝑗,𝑘 − 1 2 + 

𝑢 
𝑗,𝑘 − 1 2 + 

+ ℎ 
𝑗,𝑘 + 1 2 − 

𝑢 
𝑗,𝑘 + 1 2 − 

) 

, (17)

nd analogously for hv . Thus, the velocity point values are modified

ccordingly to these equations giving 

 

𝑗− 1 2 + ,𝑘 
= 

ℎ𝑢 𝑗,𝑘 

ℎ 𝑗,𝑘 
− 

ℎ 
𝑗+ 1 2 − ,𝑘 

ℎ 𝑗,𝑘 

Δ𝑥 
2 

D 𝑥 𝑢 𝑗,𝑘 , 

 

𝑗+ 1 2 − ,𝑘 
= 

ℎ𝑢 𝑗,𝑘 

ℎ 𝑗,𝑘 
+ 

ℎ 
𝑗− 1 2 + ,𝑘 

ℎ 𝑗,𝑘 

Δ𝑥 
2 

D 𝑥 𝑢 𝑗,𝑘 , (18)

nd 

 

𝑗,𝑘 − 1 2 + 
= 

ℎ𝑢 𝑗,𝑘 

ℎ 𝑗,𝑘 
− 

ℎ 
𝑗,𝑘 + 1 2 − 

ℎ 𝑗,𝑘 

Δ𝑦 
2 

D 𝑦 𝑢 𝑗,𝑘 , 

 

𝑗,𝑘 + 1 2 − 
= 

ℎ𝑢 𝑗,𝑘 

ℎ 𝑗,𝑘 
+ 

ℎ 
𝑗,𝑘 − 1 2 + 

ℎ 𝑗,𝑘 

Δ𝑦 
2 

D 𝑦 𝑢 𝑗,𝑘 . (19)

he same modification is applied for the velocity v . We remark that

he depth point values in (14) are not yet hydrostatically reconstructed.
92 
f the interface water depth, e. g., ℎ 𝑗+1∕2− ,𝑘 , is smaller than some dry

hreshold 𝜖dry , we set the respective velocity to zero in the reconstruc-

ion step, i. e. hu j,k / h j,k is set to zero if h j,k < 𝜖 for all j, k . 

.4.2. Second-order hydrostatic reconstruction 

Here, we describe the procedure used in Audusse et al. (2004) to

et second-order HR water heights h ∗ at the interfaces. The left- and

ight-sided second-order bottom point values are given by subtracting

he water depth from the level, i. e. 

 

𝑗− 1 2 + ,𝑘 
= 𝑤 

𝑗− 1 2 + ,𝑘 
− ℎ 

𝑗− 1 2 + ,𝑘 
, 𝑏 

𝑗,𝑘 − 1 2 + 
= 𝑤 

𝑗,𝑘 − 1 2 + 
− ℎ 

𝑗,𝑘 − 1 2 + 
, 

 

𝑗+ 1 2 − ,𝑘 
= 𝑤 

𝑗+ 1 2 − ,𝑘 
− ℎ 

𝑗+ 1 2 − ,𝑘 
, 𝑏 

𝑗,𝑘 + 1 2 − 
= 𝑤 

𝑗,𝑘 + 1 2 − 
− ℎ 

𝑗,𝑘 + 1 2 − 
. (20) 

rom the second-order bottom point values at the interfaces, the HR

nterface bottom values are set to 

 

∗ , Aud 

𝑗+ 1 2 ,𝑘 
= max 

( 

𝑏 
𝑗+ 1 2 − ,𝑘 

, 𝑏 
𝑗+ 1 2 + ,𝑘 

) 

. (21) 

hen the hydrostatic interface heights h ∗ are reconstructed by 

 

∗ , Aud 

𝑗− 1 2 + ,𝑘 
= max 

( 

𝑤 

𝑗− 1 2 + ,𝑘 
− 𝑏 

∗ , Aud 

𝑗− 1 2 ,𝑘 
, 0 
) 

. 

 

∗ , Aud 

𝑗+ 1 2 − ,𝑘 
= max 

( 

𝑤 

𝑗+ 1 2 − ,𝑘 
− 𝑏 

∗ , Aud 

𝑗+ 1 2 ,𝑘 
, 0 
) 

. (22) 

he procedure is visualized in Fig. 3 a and b. 

.4.3. “Adaptive ” second-order hydrostatic reconstruction 

We introduce a new second-order reconstruction in combination

ith the recent hydrostatic reconstruction introduced by Chen and

oelle (2017) . We propose a reconstruction that is additionally based on

ottom values in case of “large ” discontinuities in bathymetry and water

evels, as explained for the x -dimension in the following paragraph. If

e might land in a “partially wet ” situation, i. e. 

 

𝑗− 1 2 + ,𝑘 
− ℎ 

𝑗− 1 2 + ,𝑘 
> 𝑤 𝑗−1 ,𝑘 or 𝑤 

𝑗+ 1 2 − ,𝑘 
− ℎ 

𝑗+ 1 2 − ,𝑘 
> 𝑤 𝑗+1 ,𝑘 , (23) 

hen, at this cell, we check if the bottom slope 

 𝑥 𝑏 𝑗,𝑘 = minmod 
( 

𝜃
𝑏 𝑗,𝑘 − 𝑏 𝑗−1 ,𝑘 

Δ𝑥 
, 
𝑏 𝑗+1 ,𝑘 − 𝑏 𝑗−1 ,𝑘 

2Δ𝑥 
, 𝜃
𝑏 𝑗+1 ,𝑘 − 𝑏 𝑗,𝑘 

Δ𝑥 

) 

. (24) 

s greater than the water level slope D x w j, k . If the conditions 

D 𝑥 𝑤 𝑗,𝑘 | > |D 𝑥 𝑏 𝑗,𝑘 | (25) 

nd (23) hold, we reset the water level slope 

 𝑥 𝑤 𝑗,𝑘 = D 𝑥 ℎ 𝑗,𝑘 + D 𝑥 𝑏 𝑗,𝑘 . (26) 

e proceed by recalculating the second-order water level point val-

es (15) . Condition (25) ensures a correct treatment at partially wet

ells and at wet-dry regions of an advancing wave front on a sloped
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Fig. 3. Second-order reconstruction for partially wet cells. 

a) From the cell centered values (marked with dots), slopes 

for the water depth and water levels and are derived in the 

scheme of Audusse et al. b) Then, the bottom slope and HR 

point values are reconstructed. c) For the BHNW scheme, 

we additionally reconstruct the bottom slope if interfaces 

are partially wet. d) In this case, the water level slope is 

recomputed from the water depth and bottom slope and 

used to derive the HR bottom values (red asterisks). We 

see that the left HR interface depth ℎ ∗ 
𝑗−1∕2+ differs in the 

two second-order HR reconstructions. (For interpretation 

of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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ottom. We remark that the bottom slopes, e. g., D x b j,k in (24) , can be

recomputed for time-independent bathymetry values. 

Then, we derive a second-order HR bottom value per interface, 

 

∗ , CN 

𝑗− 1 2 ,𝑘 
= min 

( 

𝑏 
∗ , Aud 

𝑗− 1 2 ,𝑘 
, min 

( 

𝑤 

𝑗− 1 2 + ,𝑘 
, 𝑤 

𝑗− 1 2 − ,𝑘 

) ) 

, 

 

∗ , CN 

𝑗+ 1 2 ,𝑘 
= min 

( 

𝑏 
∗ , Aud 

𝑗+ 1 2 ,𝑘 
, min 

( 

𝑤 

𝑗+ 1 2 + ,𝑘 
, 𝑤 

𝑗+ 1 2 − ,𝑘 

) ) 

(27) 

rom the water level point values (15) and Audusse’s HR bottom values

 

∗ ,Aud (21) , which are also depending on the water level point values.

e set the second-order HR left and right interface depth values h ∗ to 

 

∗ , CN 

𝑗− 1 2 + ,𝑘 
= min 

( 

𝑤 

𝑗− 1 2 + ,𝑘 
− 𝑏 

∗ , CN 

𝑗− 1 2 ,𝑘 
, ℎ 

𝑗− 1 2 + ,𝑘 

) 

, 

 

∗ , CN 

𝑗+ 1 2 − ,𝑘 
= min 

( 

𝑤 

𝑗+ 1 2 − ,𝑘 
− 𝑏 

∗ , CN 

𝑗+ 1 2 ,𝑘 
, ℎ 

𝑗+ 1 2 − ,𝑘 

) 

, (28) 

sing the water depth (14) and level (15) point values, see also Fig. 3 c

nd d. Eqs. (27) and (28) are the second-order analogs to Eqs. (9) and

10) . The HR reconstructed depth values (28) and (22) agree in cells

here either condition (23) or condition (25) is not true for the cell

tself and all neighboring cells. In general, our HR interface point values

o not agree with the original HR interface point values, compare Fig. 3 .

This adaptive reconstruction strategy is necessary, since a naive

econd-order reconstruction can not be applied to all cells as in the vicin-

ty of strong bottom jumps a back wave might emerge at the top of the

tep. This unphysical behavior is caused by an unphysical bottom recon-

truction in the upper cell of the bottom jump. 

We conclude this section with properties of the HR interface depth

alues. Since the reconstruction operator obeys the maximum principle

or 𝜃 ≤ 2, particularly ℎ 
𝑗− 1 2 + ,𝑘 

, ℎ 
𝑗+ 1 2 − ,𝑘 

≥ min ( ℎ 𝑗−1 ,𝑘 , ℎ 𝑗,𝑘 , ℎ 𝑗+1 ,𝑘 ) ≥ 0 , the

econd-order reconstructed interface depths ℎ 
𝑗+ 1 2 − ,𝑘 

are nonnegative by

onstruction, see (12) and (14) . Since furthermore in any case the water

evels are greater than the reconstructed bathymetry, e. g., 𝑤 

𝑗+ 1 2 − ,𝑘 
≥

93 
 

∗ 
𝑗+ 1 2 ,𝑘 

, the reconstructed HR water depths fulfill 

 ≤ ℎ ∗ 
𝑗+ 1 2 ± ,𝑘 

≤ ℎ 
𝑗+ 1 2 ± ,𝑘 

, 0 ≤ ℎ ∗ 
𝑗,𝑘 + 1 2 ± 

≤ ℎ 
𝑗,𝑘 + 1 2 ± 

, (29) 

or all interfaces 𝐼 𝑗+1∕2 ,𝑘 and 𝐼 𝑗,𝑘 +1∕2 . 

.5. Source terms 

We revisit the bathymetry source term S in a cell C j,k for the second-

rder HR scheme of Audusse et al. (2004) . Clearly, the depth source

erm S h is zero, i. e. 

 

ℎ 
𝑗,𝑘 

= 0 . (30) 

he momentum source terms S hu and S hv are split into interface parts

nd a centered part �̂� 𝑗,𝑘 , i. e. 

 

ℎ𝑢 
𝑗,𝑘 

= 𝐒 ℎ𝑢 
𝑗− 1 2 + ,𝑘 

+ 𝐒 ℎ𝑢 
𝑗+ 1 2 − ,𝑘 

+ ̂𝐒 ℎ𝑢 
𝑗,𝑘 
, (31) 

 

ℎ𝑣 
𝑗,𝑘 

= 𝐒 ℎ𝑣 
𝑗,𝑘 − 1 2 + 

+ 𝐒 ℎ𝑣 
𝑗,𝑘 + 1 2 − 

+ ̂𝐒 ℎ𝑣 
𝑗,𝑘 
. (32) 

he centered source terms read 

̂
 

Aud ,ℎ𝑢 
𝑗,𝑘 

= − 

𝑔 

Δ𝑥 

ℎ 
𝑗+ 1 2 − ,𝑘 

+ ℎ 
𝑗− 1 2 + ,𝑘 

2 

( 

𝑏 
𝑗+ 1 2 − ,𝑘 

− 𝑏 
𝑗− 1 2 + ,𝑘 

) 

(33) 

̂
 

Aud ,ℎ𝑣 
𝑗,𝑘 

= − 

𝑔 

Δ𝑦 

ℎ 
𝑗,𝑘 + 1 2 − 

+ ℎ 
𝑗,𝑘 − 1 2 + 

) 

2 

( 

𝑏 
𝑗,𝑘 + 1 2 − 

− 𝑏 
𝑗,𝑘 − 1 2 + 

) 

. (34) 

nsure second-order consistency in regions where the solution is smooth.

f the solution is varying a lot, the source term is distributed towards the

nterfaces ( Bouchut, 2007 ). The interface terms are only described for

he x -dimension, all the steps are repeated analogously in y -dimension

or 𝐒 ℎ𝑣 
𝑗,𝑘 − 1 2 + 

and 𝐒 ℎ𝑣 
𝑗,𝑘 + 1 2 − 

. The interface source terms in the second-order

R scheme ( Audusse et al., 2004 ) are given as 
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Fig. 4. The second-order reconstruction of Audusse et al. 

leads only to a centered source term �̂� 𝑗 (yellow) in the 

upper cell, as the HR bottom values (red asterisks) agree 

with the second-order bottom values. In contrast, in our 

proposed BHNW scheme, interface source terms appear 

in the upper cell, where the right subcell source term 

labeled 𝐒 𝑗+1∕2− accounts for the right bottom jump. The 

source terms are visualized as trapezoids based on the 

water depths and the difference Δ𝑏 𝑗 = 𝑏 𝑗+1∕2− − 𝑏 𝑗−1∕2+ of 

the second-order bottom values for the centered term, 

or, the difference Δ𝑏 ∗ , CN 

𝑗+1∕2− = 𝑏 
∗ , CN 

𝑗+1∕2 − 𝑏 𝑗 between recon- 

structed and cell-centered bottom value for the interface 

term. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of 

this article.) 

Fig. 5. Approximation of second order source terms as in 

Audusse et al. (Aud) or simply by two interface source 

terms, visualized in one spatial dimension. The images 

show the difference of the source term approximation 

𝐒 Aud 
𝑗−1∕2+ + ̂𝐒 𝑗 of Audusse et al. and the simple approxima- 

tion 𝐒 𝑗−1∕2+ + 𝐒 𝑗+1∕2− . In this case, 𝐒 Aud 
𝑗+1∕2− = 0 . 
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Aud ,ℎ𝑢 

𝑗− 1 2 + ,𝑘 
= − 

𝑔 

Δ𝑥 

ℎ 
𝑗− 1 2 + ,𝑘 

+ ℎ 
∗ , Aud 

𝑗− 1 2 + ,𝑘 

2 

( 

ℎ 
𝑗− 1 2 + ,𝑘 

− ℎ 
∗ , Aud 

𝑗− 1 2 ,𝑘 

) 

, 

 

Aud ,ℎ𝑢 

𝑗+ 1 2 − ,𝑘 
= − 

𝑔 

Δ𝑥 

ℎ 
∗ , Aud 

𝑗+ 1 2 − ,𝑘 
+ ℎ 

𝑗+ 1 2 − ,𝑘 

2 

( 

ℎ 
∗ , Aud 

𝑗+ 1 2 ,𝑘 
− ℎ 

𝑗+ 1 2 − ,𝑘 

) 

. (35)

he smoother the solution, the smaller the differences of the variables

cross the interfaces. Thus the source term is mostly influenced by the

ell centered source term. However, since the source terms (35) only

epend on the smoothness of the water level w and depth h , discontinu-

ties in the bottoms might be interpreted only as a centered source term

eflecting the water level slope ( Fig. 4 ). 

We approximate the source term without a centered source

erm ( Hou et al., 2013a; 2013b ), i. e. 

 

ℎ𝑢 
𝑗,𝑘 

= 𝐒 ℎ𝑢 
𝑗− 1 2 + ,𝑘 

+ 𝐒 ℎ𝑢 
𝑗+ 1 2 − ,𝑘 

, (36)

 

ℎ𝑣 
𝑗,𝑘 

= 𝐒 ℎ𝑣 
𝑗,𝑘 − 1 2 + 

+ 𝐒 ℎ𝑣 
𝑗,𝑘 + 1 2 − 

, (37)

here the left and right interface source term is given by 

 

ℎ𝑢 

𝑗− 1 2 + ,𝑘 
= − 

𝑔 

Δ𝑥 

ℎ 𝑗,𝑘 + ℎ 
∗ , CN 

𝑗− 1 2 + ,𝑘 

2 

( 

𝑏 𝑗,𝑘 − 𝑏 
∗ , CN 

𝑗− 1 2 ,𝑘 

) 

, 

 

ℎ𝑢 

𝑗+ 1 2 − ,𝑘 
= − 

𝑔 

Δ𝑥 

ℎ 
∗ , CN 

𝑗+ 1 2 − ,𝑘 
+ ℎ 𝑗,𝑘 

2 

( 

𝑏 
∗ , CN 

𝑗+ 1 2 ,𝑘 
− 𝑏 𝑗,𝑘 

) 

. (38)

nd analogously for 𝐒 ℎ𝑣 
𝑗,𝑘 

. The simple approximation slightly reduces the

omputational burden and is easier to implement. The difference be-

ween the two source term approximations is visualized in Fig. 5 for

ully wet cells. We remark that our source term treatment consisting of

36) –(38) also leads to differences in wet regions, when compared to the

riginal HR method ( Audusse et al., 2004 ). A similar approximation of

he source term without the centered part can also be found in the works

f Hou et al. (2013a,b) with the following source terms 𝐒 ℎ𝑢 
𝑗− 1 2 + ,𝑘 

, 𝐒 ℎ𝑢 
𝑗+ 1 2 − ,𝑘 
94 
n (36) and (36) 

 

Hou ,ℎ𝑢 

𝑗− 1 2 + ,𝑘 
= − 

𝑔 

Δ𝑥 

ℎ 𝑗,𝑘 + ℎ 
∗ , Aud 

𝑗− 1 2 + ,𝑘 

2 

( 

𝑏 𝑗,𝑘 − 𝑏 
∗ , Hou 

𝑗− 1 2 + ,𝑘 

) 

, 

 

Hou ,ℎ𝑢 

𝑗+ 1 2 − ,𝑘 
= − 

𝑔 

Δ𝑥 

ℎ 
∗ , Aud 

𝑗+ 1 2 − ,𝑘 
+ ℎ 𝑗,𝑘 

2 

( 

𝑏 
∗ , Hou 

𝑗+ 1 2 − ,𝑘 
− 𝑏 𝑗,𝑘 

) 

. (39) 

n the robust and simple scheme of Hou et al. (2013a,b) only the bed

levations at the lower side are modified resulting in different bottom

alues at the left and the right interface to maintain well-balancedness,

. e. 

 

∗ , Hou 

𝑗− 1 2 + ,𝑘 
= min 

( 

𝑏 
∗ , Aud 

𝑗− 1 2 ,𝑘 
, 𝑤 

𝑗− 1 2 + ,𝑘 

) 

, 𝑏 
∗ , Hou 

𝑗+ 1 2 − ,𝑘 
= min 

( 

𝑏 
∗ , Aud 

𝑗+ 1 2 ,𝑘 
, 𝑤 

𝑗+ 1 2 − ,𝑘 

) 

. 

(40) 

hus, there is no acceleration in the upper cell’s source terms coming

rom the bed slope. Thus, as in the scheme of Audusse et al. (2004) , it

oes not fully account for bathymetry steps at shallow flow conditions.

f in two adjacent cells there is shallow flow and we are in a partially

et situation (23) , then the simple source term approximation of Hou

t al. neglects the difference 𝑤 

𝑗+1∕2 ,𝑘 − 𝑏 
∗ , Aud 
𝑗+1∕2 ,𝑘 . Thus, the contribution

f the bottom jump to the source term at the upper cell is neglected, in

ontrast to our approach. This is further highlighted in the numerical

xperiments, see Section 3.1 and 3.3 . 

.6. Numerical fluxes 

The discretized fluxes are obtained through an approximate Riemann

olver, the HLL flux  HLL ( Harten et al., 1983 ). The hydrostatically

econstructed interface point values 𝐔 

∗ = [ ℎ ∗ , ℎ ∗ 𝑢, ℎ ∗ 𝑣 ] 𝑇 , consisting of

he HR depth h ∗ (28) and the HR reconstructed discharges, i. e., the

econstructed velocities u (18) , v (19) times the HR depth h ∗ , are used

s Riemann states for the numerical flux 

 

𝑗+ 1 2 ,𝑘 
=  HLL 

( 

𝐔 

∗ 
𝑗+ 1 2 − ,𝑘 

, 𝐔 

∗ 
𝑗+ 1 2 + ,𝑘 

) 
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= 

𝜎+ 
𝑗+ 1 2 ,𝑘 

𝐅 
( 

𝐔 

∗ 
𝑗+ 1 2 − ,𝑘 

, 𝑏 
𝑗+ 1 2 ,𝑘 

) 

− 𝜎− 
𝑗+ 1 2 ,𝑘 

𝐅 
( 

𝐔 

∗ 
𝑗+ 1 2 + ,𝑘 

, 𝑏 
𝑗+ 1 2 ,𝑘 

) 

𝜎+ 
𝑗+ 1 2 ,𝑘 

− 𝜎− 
𝑗+ 1 2 ,𝑘 

+ 

𝜎+ 
𝑗+ 1 2 ,𝑘 

𝜎− 
𝑗+ 1 2 ,𝑘 

𝜎+ 
𝑗+ 1 2 ,𝑘 

− 𝜎− 
𝑗+ 1 2 ,𝑘 

( 

𝐔 

∗ 
𝑗+ 1 2 + ,𝑘 

− 𝐔 

∗ 
𝑗+ 1 2 − ,𝑘 

) 

. (41) 

he nonnegative and nonpositive speed values 𝜎+ 
𝑗+ 1 2 ,𝑘 

and 𝜎− 
𝑗+ 1 2 ,𝑘 

are

unctions of the eigenvalues 𝜆 of the Jacobian of the flux F at the in-

erface 𝐼 
𝑗+ 1 2 ,𝑘 

, i. e. 

+ 
𝑗+ 1 2 ,𝑘 

= max 
( 

𝜆+ 
𝑗+ 1 2 − ,𝑘 

, 𝜆+ 
𝑗+ 1 2 + ,𝑘 

, 0 
) 

= max 

( 

𝑢 
𝑗+ 1 2 − ,𝑘 

+ 

√ 

𝑔ℎ ∗ 
𝑗+ 1 2 − ,𝑘 

, 𝑢 
𝑗+ 1 2 + ,𝑘 

+ 

√ 

𝑔ℎ ∗ 
𝑗+ 1 2 + ,𝑘 

, 0 

) 

. (42) 

− 
𝑗+ 1 2 ,𝑘 

= min 

( 

𝑢 
𝑗+ 1 2 − ,𝑘 

− 

√ 

𝑔ℎ ∗ 
𝑗+ 1 2 − ,𝑘 

, 𝑢 
𝑗+ 1 2 + ,𝑘 

− 

√ 

𝑔ℎ ∗ 
𝑗+ 1 2 + ,𝑘 

, 0 

) 

(43) 

nalogously, speed values in y -direction can be derived from the Ja-

obian of the flux in y -dimension G . We remark that the HLL flux is

onsistent, i. e.  HLL ( 𝐔 , 𝐔 ) = 𝐅 ( 𝐔 ) and with the given choices for the

peeds it is also able to handle dry states. 

The HLL flux is remarkable robust, however, it is known that the

LL flux does not resolve shear waves accurately as it ignores the con-

act discontinuity of the transverse velocity ( Toro, 2001 ). One way to

x this issue is to include the middle wave, which leads to the Harten-

ax-van Leer-contact (HLLC) flux. To preserve the nonnegativity of the

ater depths and to satisfy a discrete entropy inequality, additional sub-

haracteristic conditions have to be satisfied ( Bouchut, 2007 ). It is pos-

ible to approximate the HLLC flux with a simplified version, i. e., 

 

ℎ𝑣 

𝑗+ 1 2 − ,𝑘 
= 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑣 𝑗  

ℎ 

𝑗+ 1 2 − ,𝑘 
if  

ℎ 

𝑗+ 1 2 − ,𝑘 
≥ 0 , 

𝑣 𝑗+1  

ℎ 

𝑗+ 1 2 − ,𝑘 
otherwise. 

(44) 

Other choices for the approximate Riemann solver (ARS) include the

oe solver. Although the Roe solver is more accurate than the HLL flux,

t has difficulties with dry beds. The handling of dry beds is often in-

orporated by imposing internal boundary conditions, which adds com-

lexity to schemes using the Roe solver ( Castro et al., 2005; Murillo and

arcía-Navarro, 2012; Murillo and Navas-Montilla, 2016; Parés and Pi-

entel, 2019 ). Moreover, at transcritical rarefactions, i. e., if the left

r right eigenvalue is close to zero, an entropy fix is needed ( Harten

nd Hyman, 1983; LeVeque, 1992 ). Thus, the Roe solver is a priori less

obust and requires an additional parameter, which decides if speeds

re close to zero and thus considered for a transcritical rarefaction fix

 Toro, 2001 ). 

.7. Time integration 

For first-order time integration, an explicit Euler is used, i. e. 

 

𝑛 +1 
𝑗,𝑘 

= 𝐔 

𝑛 
𝑗,𝑘 

+ Δ𝑡 𝐑 ( 𝐔 

𝑛 ) 𝑗,𝑘 , (45) 

here 

 ( 𝐔 

𝑛 ) 𝑗,𝑘 = 𝐒 𝑛 
𝑗,𝑘 

− 

𝐅 𝑛 
𝑗+ 1 2 ,𝑘 

− 𝐅 𝑛 
𝑗− 1 2 ,𝑘 

Δ𝑥 
− 

𝐆 

𝑛 

𝑗,𝑘 + 1 2 
− 𝐆 

𝑛 

𝑗,𝑘 − 1 2 
Δ𝑦 

. (46)

uantities denoted by a superscript n depend on the state U 

n ≈U ( t n ). 

The Courant-Friedrichs-Lewy (CFL) condition restricts the time step

𝑡 𝑛 = 𝑡 𝑛 +1 − 𝑡 𝑛 and is given by 

𝑡 𝑛 ≤ CFL ⋅min 

( 

Δ𝑥 
𝜎𝑛 𝑥 

, 
Δ𝑦 
𝜎𝑛 𝑦 

) 

, (47)
95 
here 𝜎𝑛 𝑥 and 𝜎𝑛 𝑦 represent the maximum wave speeds in x - and y -

irection at time t n . They are computed by a reduction over all inter-

ace wave speeds given by the absolute values of (42) and (43) . The CFL

onstant has to be positive and is not allowed to be greater 0.25 to en-

ure the positivity of the two-dimensional second-order accurate finite

olume (FV) scheme, as we show in Section 2.8 . 

Heun’s method is used for second-order time integration. By denot-

ng intermediate states with an asterisk, the state 𝐔 

𝑛 +1 at time 𝑡 𝑛 +1 is

iven by 

 

∗ ,𝑛 +1 = 𝐔 

𝑛 + Δ𝑡 𝐑 ( 𝐔 

𝑛 ) , (48) 

 

∗ ,𝑛 +2 = 𝐔 

∗ ,𝑛 +1 + Δ𝑡 𝐑 ( 𝐔 

∗ ,𝑛 +1 ) (49) 

 

𝑛 +1 = 

1 
2 

(
𝐔 

𝑛 + 𝐔 

∗ ,𝑛 +2 
)
= 

1 
2 

(
𝐔 

𝑛 + 𝐔 

∗ ,𝑛 +1 
)
+ 

Δ𝑡 
2 
𝐑 ( 𝐔 

∗ ,𝑛 +1 ) (50) 

here the residual R ( U ) is defined according to (46) . Clearly, by (50) ,

he intermediate state 𝐔 

∗ ,𝑛 +2 does not need to be explicitly calculated.

he solution U is updated dimension-wise. First, we compute recon-

tructed values, fluxes and sources in x -dimension. Second, we perform

he computations in y -dimension. Afterwards we update the solution

ith the combined residual. 

.8. Positivity preserving 

Our scheme preserves the nonnegativity of the water depths, i. e. 

 

𝑛 
𝑗,𝑘 

≥ 0 ⇒ ℎ 𝑛 +1 
𝑗,𝑘 

≥ 0 , (51) 

nder a certain CFL condition. 

Following Audusse et al. (2004) , we require that the homogeneous

ux  preserves the nonnegativity of the water depths h by interface with

umerical speeds 𝜎+ ( 𝑈 𝑖 , 𝑈 𝑖 +1 ) ≥ 0 and 𝜎− ( 𝑈 𝑖 , 𝑈 𝑖 +1 ) ≤ 0 , which means

hat whenever the CFL condition 

 ≤ 𝜎( 𝑈 𝑖 , 𝑈 𝑖 +1 )Δ𝑡 ≤ Δ𝑥 (52)

ith 

( 𝑈 𝑖 , 𝑈 𝑖 +1 ) = max (− 𝜎− ( 𝑈 𝑖 , 𝑈 𝑖 +1 ) , 𝜎+ ( 𝑈 𝑖 , 𝑈 𝑖 +1 )) (53)

olds, we have 

 𝑖 − 

1 
𝜎− ( 𝑈 𝑖 , 𝑈 𝑖 +1 ) 

(
 

ℎ ( 𝑈 𝑖 , 𝑈 𝑖 +1 ) − ℎ 𝑖 𝑢 𝑖 
)
≥ 0 , (54) 

 𝑖 +1 − 

1 
𝜎+ ( 𝑈 𝑖 , 𝑈 𝑖 +1 ) 

(
 

ℎ ( 𝑈 𝑖 , 𝑈 𝑖 +1 ) − ℎ 𝑖 +1 𝑢 𝑖 +1 
)
≥ 0 . (55) 

he HLL flux preserves nonnegative water heights by interface, e. g.,

t fulfills (54) and (55) , for the specified numerical speeds 𝜎+ , 𝜎− in

42) and (43) , respectively ( Bouchut, 2007 ). 

The new second-order scheme guarantees nonnegative water depth

or the SWEs (1) under condition (47) with the CFL number being

alved when compared to the CFL condition needed for a positivity-

reserving first-order scheme associated with the homogeneous prob-

em, e. g., the HLL scheme. This statement can be proved simi-

arly as in Audusse et al. (2004) , Audusse and Bristeau (2005) and

ouchut (2004) . The positivity follows from the facts that the recon-

tructed depths are nonnegative (22) and that the chosen second-order

ime integration is a convex combination of two first-order time steps. 

The two-dimensional scheme 

 

𝑛 +1 
𝑗,𝑘 

= ℎ 𝑛 
𝑗,𝑘 

− 

Δ𝑡 
Δ𝑥 

( 

𝐅 ℎ,𝑛 
𝑗+ 1 2 ,𝑘 

− 𝐅 ℎ,𝑛 
𝑗− 1 2 ,𝑘 

) 

− 

Δ𝑡 
Δ𝑦 

( 

𝐆 

ℎ,𝑛 

𝑗,𝑘 + 1 2 
− 𝐆 

ℎ,𝑛 

𝑗,𝑘 − 1 2 

) 

, (56) 

s positivity-preserving under half the CFL condition needed for the

ositivity-preserving one-dimensional scheme. Thus, by choosing a posi-

ive CFL constant not greater than 0.25 we obtain a positivity-preserving

wo-dimensional second-order scheme. We remark that the different

ource treatment does not have any influence on the preservation of non-

egative states. Furthermore, the numerical speed of the HR schemes is

ot higher than the one of the associated homogenous scheme, since

he numerical speed is a monotone function of the water depth h ,

ee (42) and (43) . 
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Fig. 6. Lake at rest. Visualization of a dry-wet boundary, i. e. ℎ 𝑗 = 0 , ℎ 𝑗+1 > 
0 . The HR interface depth values ℎ ∗ 

𝑗+1∕2− and ℎ ∗ 
𝑗+1∕2+ vanish. The HR interface 

bathymetry values b ∗ are marked with red asterisks. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 
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.9. Well-Balancedness 

We show well-balancedness in two steps. First, for the still-water

teady state and, second, for the lake at rest steady state involving wet-

ry boundaries. We remark that since our proposed scheme does not

ouple dimensions for the flux and source terms, it is enough to show

ell-balancedness dimension-wise. In fact, each interface can be associ-

ted with a subcell for which we will show well-balancedness. We will

se the following convex decomposition of the residuum 

 𝑗,𝑘 = 𝐑 

𝑗− 1 2 + ,𝑘 
+ 𝐑 

𝑗+ 1 2 − ,𝑘 
+ 𝐑 

𝑗,𝑘 − 1 2 + 
+ 𝐑 

𝑗,𝑘 + 1 2 − 
, (57)

here 

 

𝑗− 1 2 + ,𝑘 
= − 

1 
Δ𝑥 

(
𝐅 𝑗,𝑘 − 𝐅 

𝑗− 1 2 ,𝑘 
)
+ 𝐒 

𝑗− 1 2 + ,𝑘 
(58)

ith analogous definitions for the other subcells. 

In the still water situation, we have ∇ 𝑤 = 0 and ℎ𝑢, ℎ𝑣 = 0 and we

nalyse the nontrivial case h > 0. In this case, all cells are fully wet

nd the reconstructed interface bottom levels and water depths agree

ith the ones defined by Audusse et al. (2004) . For a cell C j,k , we will

how that the left residuum 𝐑 

𝑗− 1 2 + ,𝑘 
(58) vanishes. For a constant wa-

er level W , which is preserved by our second-order reconstruction, i. e.

 

𝑗− 1 2 + ,𝑘 
= 𝑤 

𝑗,𝑘 + 1 2 − 
= 𝑤 

𝑗,𝑘 − 1 2 + 
= 𝑤 

𝑗,𝑘 + 1 2 − 
= 𝑊 for all j, k , the HR left and

ight interface water depths are the same by (11) . The depth and the

 -discharge component of the residuum 𝐑 𝑗−1∕2+ ,𝑘 are zero because of

he consistency of the flux and the absence of source terms. For the hu -

uxes, we have 

 

ℎ𝑢 

𝑗− 1 2 + ,𝑘 
= 𝐅 ℎ𝑢 

( 

𝐔 

∗ 
𝑗 
1 
2 − ,𝑘 

, 𝐔 

∗ 
𝑗− 1 2 + ,𝑘 

) 

= 

𝑔 

2 
ℎ 
∗ , 2 
𝑗+ 1 2 ,𝑘 

, (59)

nd 

 

ℎ𝑢 
𝑗,𝑘 

= 𝐅 ℎ𝑢 ( 𝐔 𝑗,𝑘 ) = 

𝑔 

2 
ℎ 2 
𝑗,𝑘 
. (60)

y consistency of the HLL flux and since the water is at rest. Further-

ore, we notice that 

 𝑗,𝑘 − ℎ ∗ 
𝑗− 1 2 + ,𝑘 

= 𝑊 − 𝑏 𝑗,𝑘 − 

( 

𝑊 − 𝑏 ∗ 
𝑗− 1 2 + ,𝑘 

) 

= − 

( 

𝑏 𝑗,𝑘 − 𝑏 ∗ 
𝑗− 1 2 + ,𝑘 

) 

, (61)

s the water level W is greater than the bathymetry, and use it to com-

ute the left source term 

 

ℎ𝑢 

𝑗− 1 2 + ,𝑘 
= − 

𝑔 

Δ𝑥 

ℎ 𝑗,𝑘 + ℎ ∗ 
𝑗− 1 2 + ,𝑘 

2 

( 

𝑏 𝑗,𝑘 − 𝑏 ∗ 
𝑗− 1 2 + ,𝑘 

) 

(62)

= 

𝑔 

2Δ𝑥 

( 

ℎ 2 
𝑗,𝑘 

− ℎ 
∗ , 2 
𝑗− 1 2 + ,𝑘 

) 

. (63)

ogether, this shows 

 

ℎ𝑢 
𝑗−1∕2+ ,𝑘 = 0 . (64)

he residuum vanishes also for all other subcells by the same rea-

ons, yielding a vanishing cell residuum 𝐑 𝑗,𝑘 = 𝟎 . Thus, the new two-

imensional second-order scheme is well-balanced for the still-water

teady state (3) . 

In the lake at rest situation, we have ℎ ∇ 𝑤 = 0 and ℎ𝑢, ℎ𝑣 = 0 . It is
nough to show well-balancedness for wet-dry boundaries in one di-

ension, e. g., a dry-wet front ( Fig. 6 ), i. e. ℎ 𝑗,𝑘 = 0 , ℎ 𝑗+1 ,𝑘 > 0 and 𝑏 𝑗,𝑘 >

 𝑗+1 ,𝑘 . For a dry-wet front 𝑏 𝑗,𝑘 = 𝑤 𝑗,𝑘 > 𝑤 𝑗+1 ,𝑘 = 𝑏 𝑗+1 ,𝑘 + ℎ 𝑗+1 ,𝑘 > 𝑏 𝑗+1 ,𝑘 
olds. We have to show that the residuum 

 𝑗,𝑘 = − 

1 
Δ𝑥 

(
𝐅 𝑗+1∕2 ,𝑘 + 𝐅 𝑗−1∕2 ,𝑘 

)
+ 𝐒 𝑗+1∕2− ,𝑘 + 𝐒 𝑗−1∕2+ ,𝑘 (65)

n these cells vanishes, that is 𝐑 𝑗,𝑘 = 0 and 𝐑 𝑗+1 ,𝑘 = 0 . At a wet-dry front,

he bathymetry slope D x b can only be greater or equal the water level

lope D x w , thus condition (25) is not true, and we only need to consider

ater levels and depths as second-order reconstructed variables. The
96 
econstructed water levels are still constant at wet cells. At the interface

 𝑗+1∕2 ,𝑘 , we observe that 𝑏 ∗ 
𝑗+1∕2 ,𝑘 = 𝑤 𝑗+1 ,𝑘 and ℎ 𝑗+1∕2− ,𝑘 = 0 , therefore 

 

∗ 
𝑗+ 1 2 + ,𝑘 

= min 
( 

𝑤 

𝑗+ 1 2 + ,𝑘 
− 𝑏 ∗ 

𝑗+ 1 2 ,𝑘 
, ℎ 

𝑗+ 1 2 + ,𝑘 

) 

= min 
( 

0 , ℎ 
𝑗+ 1 2 + ,𝑘 

) 

= 0 , (66)

 

∗ 
𝑗+ 1 2 − ,𝑘 

= min 
( 

𝑤 

𝑗+ 1 2 − ,𝑘 
− 𝑏 ∗ 

𝑗+ 1 2 ,𝑘 
, ℎ 

𝑗+ 1 2 − ,𝑘 

) 

= 0 (67)

olds, compare Fig. 6 . By consistency of the numerical flux, the numer-

cal flux across the interface vanishes, 

 

𝑗+ 1 2 ,𝑘 
=  HLL 

( 

𝐔 

∗ 
𝑗+ 1 2 − ,𝑘 

, 𝐔 

∗ 
𝑗+ 1 2 + ,𝑘 

) 

=  HLL ( 𝟎 , 𝟎 ) = 𝟎 . (68)

herefore, the residual R j,k equals zero, since the cell depth h j,k and

nterface depths ℎ ∗ 
𝑗−1∕2+ ,𝑘 and ℎ ∗ 

𝑗+1∕2− ,𝑘 are zero. 

For cell 𝐶 𝑗+1 ,𝑘 , we will use the convex decomposition of the

esiduum (57) where 

 

ℎ𝑢 
𝑗+1 ,𝑘 = 

𝑔 

2 
ℎ 2 
𝑗+1 ,𝑘 , (69)

ince the water is at rest. As ℎ ∗ 
𝑗+1∕2+ ,𝑘 = 0 , we have 

 

ℎ𝑢 

𝑗+ 1 2 + ,𝑘 
= − 

𝑔 

Δ𝑥 

ℎ 𝑗+1 ,𝑘 + ℎ ∗ 
𝑗+ 1 2 + ,𝑘 

2 

( 

𝑏 𝑗+1 ,𝑘 − 𝑏 ∗ 
𝑗+ 1 2 + ,𝑘 

) 

, (70) 

= 

𝑔 

2Δ𝑥 
ℎ 2 
𝑗+1 ,𝑘 = 

1 
Δ𝑥 

𝐅 ℎ𝑢 
𝑗+1 ,𝑘 . (71) 

ith 𝐅 ℎ𝑢 
𝑗+1∕2 ,𝑘 = 0 we conclude that 𝐑 

ℎ𝑢 
𝑗+1∕2+ ,𝑘 = 0 . For a completely wet

ight interface 𝐼 𝑗+3∕2 ,𝑘 ) , 

 

𝑗+ 3 2 − ,𝑘 
= 𝟎 (72)

olds, compare the proof of the previous theorem. However, if 𝐶 𝑗+1 ,𝑘 is

egenerate, i. e., cell 𝐶 𝑗+2 ,𝑘 is dry, the second-order scheme falls back to

rst order, in which case well-balancedness follows from the first-order

N scheme. In this case, Eq. (72) also holds ( Chen and Noelle, 2017 ).

hus, the residua 𝐑 

ℎ𝑢 
𝑗,𝑘 

in x -dimension vanish for all j, k . An adaptation

f the previous arguments shows that the residua 𝐑 

ℎ𝑣 
𝑗,𝑘 

in y -dimension

anish. By inspection of the flux terms, 𝐑 

ℎ 

𝑗− 1 2 + ,𝑘 
= 𝐑 

ℎ 

𝑗+ 1 2 − ,𝑘 
= 0 for all

nterfaces in the lake-at-rest state Together, this shows that our novel

cheme is well-balanced, also for the lake at rest steady state (4) . 

We remark that our scheme is well-balanced on a per-interface basis,

hus this property holds also on unstructured grids if the second-order

econstruction keeps the water levels balanced. 
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Table 1 

Parabolic bump. Water depths error analysis for the proposed second-order 

BHNW scheme and the second-order scheme of Audusse et al. (Aud RK2). 

BHNW RK2 Aud RK2 

Δx L 1 Error L 1 EOC L ∞ Error Δx L 1 Error L 1 EOC L ∞ Error 

1 0.5688 0.0533 1 0.5633 0.0532 

0.5 0.1388 2.04 0.0170 0.5 0.1398 2.39 0.0169 

0.25 0.0277 2.32 0.0043 0.25 0.0266 2.40 0.0045 

0.125 0.0065 2.16 0.0018 0.125 0.0065 1.97 0.0018 
.10. Friction source terms 

To provide realistic water flow, a friction term is introduced in the

aboratory and real-world scenarios. The friction term S f is included via

n additional source term 

 𝑓 ( 𝐔 ) = − 𝑔𝑛 2 ℎ − 
1 
3 

⎡ ⎢ ⎢ ⎢ ⎣ 
0 

𝑢 
√
𝑢 2 + 𝑣 2 

𝑣 
√
𝑢 2 + 𝑣 2 

⎤ ⎥ ⎥ ⎥ ⎦ , (73)

here n is the Manning roughness coefficient. It is evaluated in a semi-

mplicit manner by splitting the friction source term S f into a coefficient-

ise product of an implicitly evaluated state and an explicitly evaluated

riction term ̃𝐒 𝑓 ( Brodtkorb et al., 2012 ) 

 𝑓 

(
𝐔 

∗ ,𝑛 +1 
𝑗,𝑘 

)
≈ 𝐔 

∗ ,𝑛 +1 
𝑗,𝑘 

�̃� 𝑓 ( 𝐔 

𝑛 
𝑗,𝑘 
) , (74)

 𝑓 

(
𝐔 

𝑛 +1 
𝑗,𝑘 

)
≈ 𝐔 

𝑛 +1 
𝑗,𝑘 

�̃� 𝑓 ( 𝐔 

∗ ,𝑛 +1 
𝑗,𝑘 

) . (75)

here 

 𝑓 ( 𝐔 ) = − 𝑔𝑛 2 ℎ − 
4 
3 

⎡ ⎢ ⎢ ⎢ ⎣ 
0 √

𝑢 2 + 𝑣 2 √
𝑢 2 + 𝑣 2 

⎤ ⎥ ⎥ ⎥ ⎦ . (76) 

hen, the integration from time t n to 𝑡 𝑛 +1 including friction is achieved

y using the following explicit update of the states 

 

∗ ,𝑛 +1 = 

𝐔 

𝑛 + Δ𝑡 𝐑 ( 𝐔 

𝑛 ) 
1 − Δ𝑡 ̃𝐒 𝑓 ( 𝐔 

𝑛 ) 
, (77) 

 

𝑛 +1 = 

1 
2 
𝐔 

𝑛 + 𝐔 

∗ ,𝑛 +1 + Δ𝑡 𝐑 ( 𝐔 

∗ ,𝑛 +1 ) 
1 − 

Δ𝑡 
2 �̃� 𝑓 ( 𝐔 

∗ ,𝑛 +1 ) 
, (78) 

nstead of (48) and (50) . 

. Validation 

We validate the scheme on various test cases, a dam break over a

tep, the parabolic bump, seven Riemann problems, the parabolic basin

 Thacker, 1981 ), the Malpasset dam break event, and a historical flood-

ng. Additionally, we verify the order of the scheme at the parabolic

asin and the parabolic bump. In the following sections, we denote the

cheme of Audusse et al. (2004) by Aud and the proposed second-order

cheme by BHNW. The implementation of the scheme of Audusse et al.

nly differs in the hydrostatic reconstruction (HR), the adaptive second-

rder reconstruction and in the source term approximation. In particu-

ar, the generalised minmod slope limiter and the velocity reconstruc-

ion with a dry threshold was used for all schemes. The gravity constant

 equals 9.81 in all our simulations, except for the parabolic basin where

t is set to 2. The dry threshold 𝜖dry is set to 10 −6 in the dam break and

n the parabolic basin and to 10 −4 in the Malpasset and Lobau. The ex-

erimental order of convergence EOC is defined as 

𝑂𝐶 = log 2 
( ‖‖𝑈 𝑁 

− 𝑈 

‖‖‖‖𝑈 2 𝑁 

− 𝑈 

‖‖
) 

, (79) 

here U is the exact solution and U N is the numerical approximation on

 mesh with cell size Δx ·Δy , while U 2 N is the numerical approximation

n a mesh with half of the cell size, i. e. Δx /2 ·Δy /2. We use either

he discrete L 1 -norm of the water depth, or the maximum water depth

ifference, that is, the L ∞-norm. 

.1. Dam break over a dry step 

We describe the setup for a dam break over a dry step, as spec-

fied in Chen and Noelle (2017) based on numerical experiments

rom Bollermann et al. (2013) and Castro et al. (2008) . The difficulty lies

n the correct approximation of the wet/dry front and the bottom step.
97 
s noted in the introduction, discontinuities in the bottom are outside

he validity range of the shallow water (SW) model. However, bottom

teps necessarily occur at the discrete level in finite volume methods

FVMs) and thus motivate this test. The quasi one-dimensional test is

erformed on a domain with range [0, 1] × [0, 0.01]. 

The bottom topography b and the initial water depth h 0 is given by 

 ( 𝑥, 𝑦 ) = 

{ 

−0 . 1 for 𝑥 < 0 . 1 , 
−0 . 45 otherwise, 

(80) 

nd 

 0 ( 𝑥, 𝑦 ) = 

{ 

0 . 5 for 𝑥 < 0 . 05 , 
0 otherwise, 

(81) 

espectively. We use a uniform cell size of 0.0025 m for the simulated

alues. The reference solution is computed on a grid with a cell size

f 10 −5 m and a piecewise linear step at 𝑥 = 0 . 1 with 100 cells in the

ransition layer. The transition layer used for approximating the bottom

tep is thus 0.001 m wide. 

We display the results at a final time 𝑇 = 0 . 18 s in Fig. 7 . In

his case, the scheme of Audusse et al. and the robust scheme of

ou et al. (2013a) produce nearly identical results. As already noted

n Section 2.5 , these two schemes neglect the jump in the water levels

t the interface, which leads to incorrect predictions of the velocities af-

er the step. The improved HR method of the CN scheme together with

he novel adaptive second-order reconstruction enables us to capture

he water flow after the step accurately. 

.2. Parabolic bump 

This section is devoted to show the performance of the scheme on

 quasi one-dimensional steady-state test with a parabolic bump. The

cenario is set up analogously to Audusse and Bristeau (2005) and

elestre et al. (2013) and is originally from Goutal and Maurel (1997) .

he analytical solutions for the steady states can be derived using the

ernoulli relation, see Bouchut (2007) and Delestre et al. (2013) . The

athymetry is given by 

 ( 𝑥, 𝑦 ) = 

{ 

0 . 2 − 0 . 05( 𝑥 − 10) 2 if 8 < 𝑥 < 12 , 
0 else, 

(82) 

or a domain of length L = 20 m and a width of 4 m ( Fig. 8 ). 

In the case of subcritical flow, a discharge boundary condition (BC)

s specified at the inflow 𝑥 = 0 and a water level BC at the outflow 𝑥 = 𝐿 .

he water depth is given by 

 

3 + 

( 

𝑏 − 

𝑞 

2 𝑔ℎ 𝑂 
− ℎ 𝑂 

) 

ℎ 2 + 

𝑞 2 

2 𝑔 
= 0 , (83) 

here ℎ 𝑂 = 𝑤 𝑂 = 2 m is the water depth at the outflow boundary. The

ischarge in x -direction is specified as 𝑞 = 4 . 42 m 

2 /s at the left inflow

oundary. Water levels and velocities are shown in Fig. 8 for a cell size

f 0.5 m. Since in this setup all cells are always flooded, the CN HR

alls back to the original HR and thus the first-order Audusse scheme

grees with the CN scheme. The BHNW scheme with simple source term

roduces results nearly identical to the ones of the second-order schemes

f Audusse et al. (Aud RK2). This is also visible in Table 1 , showing that

he simple source treatment has only a very small effect on the accuracy.
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Fig. 7. Dam break over dry step. Water level, depth and velocity profile after 18 s. The new second-order scheme (BHNW) outperforms both the HR scheme of 

Audusse et al. (Aud) and the robust scheme of Hou et al. (Robust). The latter two schemes give nearly exactly the same results, thus the results of the robust scheme 

are hidden by those of Audusse et al. The reference solution is obtained with the first-order scheme of Audusse et al. on a finer grid with a 250 times smaller cell 

size and a continuous piecewise linear approximation of the bottom jump. 

Fig. 8. Parabolic bump. Water level and velocity profiles for steady-state flow after 120 s. At a resolution of 0.5 m, the BHNW scheme shows visible differences from 

the analytical solution (Reference) in the vicinity of the bump edges and near the top of the bump. The first order Audusse scheme (Aud Euler) overestimates the 

water level and underestimates the velocities at the discharge inflow at the left of the bump. The second-order BHNW and Aud scheme (Aud RK2) produce nearly 

identical results in spite of the different source treatments. 

98 



A. Buttinger-Kreuzhuber, Z. Horváth and S. Noelle et al. Advances in Water Resources 127 (2019) 89–108 

Fig. 9. Parabolic bump. Water depths error analysis for the proposed second-order BHNW scheme and the second-order scheme of Audusse et al. (Aud RK2) as well 

as for the first-order scheme of Audusse et al. (Aud Euler). The simple source treatment has a negligible effect on the accuracy, as the errors of the second-order 

scheme are nearly exactly the same. 
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ue to the increased diffusivity in first-order schemes, the water levels at

he discharge inflow are underestimated (right zoom-in Fig. 8 ). An error

nalysis for a range of cell sizes starting from 1 m down to 0.125 m shows

hat the schemes are second-order accurate in the smooth subcritical

ow regime ( Fig. 9 ). 

.3. Riemann problems 

We test the scheme on several Riemann problems (RPs) including

esonant cases. All RPs are defined on the domain [−1 , 1] and by an

nitial state U 0 consisting of a left state 𝑈 𝐿 = ( ℎ 𝐿 , 𝑢 𝐿 ) with a left bottom

evel b L for x < 0, and a right state 𝑈 𝑅 = ( ℎ 𝑅 , 𝑢 𝑅 ) with a right bottom level

 R for x > 0. The exact analytical solution is given by completing the SW

ystem (1) with 𝜕 𝑡 𝑏 = 0 and connecting the resulting Riemann states.

his extended inhomogenenous system shows a rich solution pattern. In

act, the RP may have no, a unique, or multiple solutions, depending on

he given states and the bottom jump ( Han and Warnecke, 2014; LeFloch

nd Thanh, 2007; 2011 ). We restrict ourselves to cases with a unique

olution. The investigated setups are listed in Table 2 . All of them result

n a flow from left to right at the bottom jump. The analytical solution

s computed as outlined in Han and Warnecke (2014) . All simulations

re run until 0.1 s. The cell size is set to 0.002 m. We plot the water

evel and Froude number to emphasize the criticality of the flow states.

n the plots, the gray area represents the bottom topography and the

nitial water level is marked with a thin dashed line. The x-axis limits

re adapted to the RPs. 

Riemann problem 1 ( Fig. 10 ) is a dam break over a bottom jump.

he solution consists of a left rarefaction wave, a stationary shock asso-

iated with the bottom jump and a right shock. As all interfaces are fully

et, the combination of adaptive reconstruction and different source

reatment does not have any visible effect. Therefore, the second-order

udusse scheme produces almost exactly the same results as the BHNW

cheme, both are in good agreement with the analytical solution. 
Table 2 

Investigated Riemann problems. Initial left and right 

Riemann states including bottom levels. 

RP h L h R u L u R b L b R 

1 4.0 0.50537954 0.1 0.0 0.0 1.5 

2 1.5 0.16664757 2.0 0.0 0.0 2.0 

3 0.3 0.4 2.0 2.2 1.1 1.0 

4 1.0 0.8 2.0 4.0 1.1 1.0 

5 0.75 1.0 0.0 0.0 1.0 0.0 

6 0.1 0.05 0.1 0.4 0.1 0.0 

7 1.0 1.0 2.0 4.0 1.0 0.0 
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99 
Riemann problem 2 ( Fig. 11 ) is a two shock case over a bottom jump.

n this case, all interface are fully wet after 0.002 s and therefore the

econd-order Audusse scheme again produces almost exactly the same

esults as the BHNW scheme. However both schemes fail to accurately

redict the state at the top of the bottom jump. These first two Rie-

ann problems can also be found in Murillo and García-Navarro (2010,

013) . 

In Riemann problem 3 ( Fig. 12 ), we test a supercritical regime over

 downward bottom step. The state at the right of the bottom jump is

lso supercritical, it is not accurately captured by both the Audusse and

he BHNW scheme. In Riemann problem 4 ( Fig. 13 ), we test a resonant

egime over a small downward bottom step. In the resonance regime,

he emerging solution pattern is quite complex and involves critical in-

ermediate states or transcritical waves. As the stationary shock asso-

iated with a bottom jump is not allowed to cross the boundaries of

trict hyperbolicity, the left-most wave has to be a rarefaction wave from

he subcritical left state to a critical state. Then, this critical state con-

ects via a stationary shock to the supercritical states at the right. Again,

he supercritical state at the right of the bottom jump is not accurately

aptured by both schemes. RP 3 and RP 4 are taken from LeFloch and

hanh (2011) . 

In Riemann problem 5 ( Fig. 14 ), we test a dam break over a medium

ownward bottom step. The left-most wave is a rarefaction from the

ubcritical left state to a critical state, which then goes into a station-

ry hydraulic jump at the bottom discontinuity. In fact, the analytical

olution shows that at the bottom discontinuity 𝑥 = 0 three waves are

resent. First, a stationary shock shifting the bottom level 𝑏 𝐿 = 1 down

o an intermediate bottom level 𝑏 𝐼 = 0 . 5 accompanied by a supercritical

ntermediate state. Then, a stationary hydraulic jump causes the super-

ritical intermediate state to become subcritical, which is then followed

y another stationary shock that shifts the bottom level down to 𝑏 𝑅 = 0 .
he left rarefaction wave is not fully captured by both schemes, instead

 wrong intermediate state emerges that connects the left state with the

ubcritical state at the right of the bottom jump. This is an artefact of

he second-order reconstruction as the first-oder CN scheme is able to

apture the critical state, see Fig. 14 . We remark that simply using the

lassical minmod-limiter, i. e. 𝜃 = 1 , is not enough to recover the correct

ntermediate state. 

In Riemann problem 6 ( Fig. 15 ), we again test a resonant regime

ver a downward bottom step, but this time with the right water

evel below the left bottom elevation. The emerging solution pattern is

imilar to Riemann problem 3. Again, the first left wave is a rarefaction

rom the subcritical left state to a critical state, which then connects via

wo more shocks to the right subcritical state. Since at the bottom jump,

he interface is partially wet, the adaptive reconstruction enables the
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Fig. 10. Riemann problem 1. Dam break over a bottom step. Audusse and BHNW produce nearly the same results as all interfaces are fully wet. The results are in 

good agreement with the analytical solution. 

Fig. 11. Riemann problem 2. Subcritical flow onto a partially-wet bottom step. Both schemes produce acceptable results, however, they are not able to converge to 

the analytical solution. 

Fig. 12. Riemann problem 3. Supercritical regime over a small bottom step. All interfaces are wet, thus the Audusse scheme and the BHNW scheme produce nearly 

exactly the same solution. Both schemes are not able to converge to the analytical solution, but are in relatively good agreement with it. 
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p  
HNW scheme to capture the rarefaction wave at the left. To make this

oint clearer, we also compare the BHNW without adaptive reconstruc-

ion against the Audusse scheme with adaptive reconstruction in Fig. 16 .

n fact, none of these two variants is able to capture the left rarefaction

ave. This demonstrates the necessity for the adaptive second-order re-

onstruction. Moreover, the BHNW scheme provides a better estimate
100 
f the right state of the bottom discontinuity, when compared to the

cheme of Audusse et al. 

Riemann problem 7 ( Fig. 17 ) is a resonant regime over a large down-

ard bottom step, that connects a subcritical left state with a supercrit-

cal right state. The emerging solution pattern is similar to Riemann

roblem 6, except that the right-most wave is now a rarefaction wave.
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Fig. 13. Riemann problem 4. Resonant regime on a fully wet domain connecting a left subcritical state with a right supercritical state. Both schemes capture the 

complex emerging wave pattern. However they are not able to converge to the unique solution, but are close to it. 

Fig. 14. Riemann problem 5. Dam break over a medium step. A hydraulic jump at the bottom discontinuity emerges. The second-order schemes fail to capture the 

left rarefaction wave in its whole entirety, while the first-order CN scheme is able to converge to the correct solution. 

Fig. 15. Riemann problem 6. Partially-wet resonant regime over medium downward step connecting subcritical initial states. The BHNW scheme gets the full wave 

pattern right. 
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ere, also the scheme of Audusse et al. gets the left rarefaction right,

owever the BHNW achieves superior predictions of the right supercrit-

cal states. 

Concluding this section of Riemann problems, we observe that the

ew BHNW scheme is able to outperform the scheme of Audusse et al.

n the partially wet cases, while never performing worse than it. 
101 
.4. Thacker’s planar solution 

Thacker’s planar solution, sometimes also referenced as the parabolic

asin, is a classical test case for validation. Thacker (1981) provides

n analytical solution. It describes time-dependent oscillations of a pla-

ar water surface in a parabolic basin. It is widely used for compar-
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Fig. 16. Riemann problem 6. We compare two variants, the BHNW scheme without adaptive reconstruction and the Audusse scheme with adaptive reconstruction. 

Both fail to match the full wave pattern. 

Fig. 17. Riemann problem 7. Partially-wet resonant regime over large downward step connecting a subcritical left state with a supercritical right state. The BHNW 

and Audusse’s scheme capture the full wave pattern, however the BHNW provides better estimates of the right supercritical states. 

Fig. 18. Parabolic basin, well-balancedness. An initial lake at rest with constant water level 𝑤 = 0 m for a parabolic basin is simulated for 1390 s on a grid with 

a cell size of 160 m. At the cross-section 𝑦 = 0 , which is marked with a red line, we extract the velocities of wet cells. The magnitude of the velocities is within 

single-precision floating-point accuracy for our proposed BHNW second-order scheme, thus it numerically preserves the lake at rest steady-state. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 

102 
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Fig. 19. Parabolic basin. Profiles along 𝑦 = 0 of the water level and the velocity v in y -direction for the parabolic basin after one cycle at 𝑇 = 11 , 120 s. Approximations 

of the dry-wet boundary in the insets with a zoom factor of 3.0. The new second-order scheme (BHNW) approximates the analytical solution quite well on a grid 

with cell size Δ𝑥 = Δ𝑦 = 80 m. 

Fig. 20. Parabolic basin. Water depths error analysis after 11120 s for the and the second order schemes (BHNW RK2) and (Aud RK2) and the first-order schemes 

(CN Euler) and (Aud Euler). 
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ng different numerical schemes ( de la Asunción et al., 2013; Gallardo

t al., 2007; Horváth et al., 2015; Liang and Marche, 2009; Sampson

t al., 2006 ). Recently, Sampson et al. (2006) extended the solution of

hacker to support bed friction. However, their solution is limited to

ne dimension. In this two-dimensional case, we use the same setup as

oldahl et al. (1999) , where the bathymetry is given by 

 ( 𝑥, 𝑦 ) = 𝐷 0 

( 

𝑥 2 + 𝑦 2 

𝐿 

2 − 1 
) 

, (84)

here 𝐿 = 2500 m , 𝐷 0 = 1 m . 

First, we use a constant water level 𝑤 = 0 m to show well-

alancedness ( Fig. 18 ). We can see that the velocity errors are within

he accuracy of single floating-point numbers, which we used in our

mplementation. 

Second, we test against analytically given time-dependent water sur-

ace elevation and velocities 

 ( 𝑥, 𝑦 ) = 

2 𝐴𝐷 0 

𝐿 

2 ( 𝑥 cos Ω𝑡 + 𝑦 sin Ω𝑡 + 𝐿𝑏 ) , (85) 

 ( 𝑥, 𝑦 ) = − 𝐴 Ωsin Ω𝑡, (86) 

 ( 𝑥, 𝑦 ) = 𝐴 Ωcos Ω𝑡, (87) 

= 

√ 

2 𝐷 0 
2 , (88) 
𝐿 t  

103 
here we choose 𝐴 = 𝐿 ∕2 , 𝑏 0 = − 𝐴 ∕2 𝐿, and the gravitational constant

 = 1 m 

2 /s for our simulations. Then, the water level 

 ( 𝑥, 𝑦 ) = 

𝐷 0 
𝐿 

( 𝑥 cos Ω𝑡 + 𝑦 sin Ω𝑡 + 𝐿𝑏 ) , (89) 

s a plane rotating with an angular frequency of Ω ≈ 5 . 66 ⋅ 10 −4 . We let

ur simulation run for one full period, and compare our results at 𝑇 =
1 , 120 s ( Fig. 19 ). A numerical error analysis shows that our scheme has

econd-order accuracy, see Fig. 20 and Table 3 . Reduced convergence

ue to the wet-dry boundary is also reported by others ( Delis et al.,

011; Hou et al., 2013b ). 

.5. Malpasset dam break 

The Malpasset dam in southern France collapsed in 1959, resulting

n a 40 m high water wave flooding the Reyran valley. The event was ex-

austively studied in recent years ( Brodtkorb et al., 2012; George, 2011;

ou et al., 2013a; 2013b; Singh et al., 2011; Valiani et al., 2002 ). We

nvestigate the dam break on a structured grid with a cell size of 20 m.

riction is included with a uniform roughness coefficient of 𝑛 = 0 . 033
 

1/3 /s, corresponding to weedy, stony earth channels and floodplains

ith pasture and farmland. We compare simulation results with labo-

atory experiments of a 1:400 scaled model ( Frazao et al., 1999; Her-

ouet and Petitjean, 1999 ). In this experiment, arrival times of the wave

ront ( Frazao et al., 1999 ) and maximum water levels ( Hervouet and Pe-

itjean, 1999 ) were recorded at 14 gauge locations, labeled S1–S14 in
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Fig. 21. Malpasset dam break, France. Water extent 2000 s after the dam break. Labels show the nine gauge locations (S6-S14) of the laboratory experiments and 

the three voltage transformers (A–C) in the real world. 

Fig. 22. Malpasset dam break, France. (a) Maximum wa- 

ter elevations at the gauge locations (S6-S14). (b) Wave 

arrival times at the gauge locations (S6–S14). (c) Wave 

front arrival times at the three voltage transformers (1–3). 

(d) CPU run times for different simulation times. 

Table 3 

Parabolic basin. Water depths error analysis for the proposed second-order BHNW 

scheme and the second-order scheme of Audusse et al. (Aud RK2). 

BHNW RK2 Aud RK2 

Δx L 1 Error L 1 EOC L ∞ Error Δx L 1 Error L 1 EOC L ∞ Error 

160 311,910 0.0822 160 286,592 0.0727 

80 104,038 1.60 0.0539 80 96,429 1.55 0.0521 

40 35,221 1.56 0.0248 40 33,902 1.51 0.0254 

20 11,976 1.57 0.0117 20 11,773 1.53 0.0112 
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Fig. 23. Lobau historical flood, Austria. (a) Bathymetry, initial water depths and location of the 3 gauges PD.LP1, PD.LP16 and PD.LP18 and the inflow and outlet 

hydrographs at the Danube. (b) Flood extent and water depth after 2.5 days. 
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ig. 21 . No data are available for the first 5 gauges, thus we use gauge

ocations S6–S14 in our validation ( Fig. 22 a and 22 b). Additional data

s also available for the shut-down time of voltage transformers of the

istorical event ( Fig. 22 c). The locations of the gauges and transformers,

s well as the inundated area after 2000 s is displayed in Fig. 21 . Small

iscrepancies between the scale model and the numerical results were

lso reported in other studies ( Brodtkorb et al., 2012; George, 2011; Hou

t al., 2014 ), and our results are consistent with these. When compared

ith the scheme of Audusse et al. (2004) , minor differences only oc-

ur for gauges S8–S10 for the water levels and for gauges S11 and S14

or the wave arrival times, with the new BHNW scheme obtaining com-

arable or slightly better results for most of the gauges except for the

aximum water level at gauge S8. Regarding performance, our scheme

s slightly faster, 0.3% run time reduction for the first 2000 simulated

econds, than the second-order scheme of Audusse et al. on a parallel

mplementation running on a machine with a 4-core Intel i5-4960K CPU

t 3.5 GHz. Our proposed scheme performs better with increased simula-

ion time because of the different reconstruction and source term treat-

ent in regions with small water depths and complex terrain ( Fig. 22 d).
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.6. Lobau 

The Lobau is a floodplain east of Vienna, in Lower Austria, located at

he left bank of the Danube. It consists mostly of floodplain forests and

s regularly flooded. We simulate a flood that occured in January 2011

ith a CUDA GPU implementation on a NVIDIA GeForce GTX 1070. The

nitial time is set to 13 January 2011, 1am, and the initial state com-

rises several still-water bodies and the Danube ( Fig. 23 a). The water

s flowing from the Danube into the Lobau only through a small slot,

he “Schönauer Schlitz ”. The terrain is quite complex, featuring several

mall channels, which render simulations challenging. 

We apply an inflow BC upstream of Fischamend and an outflow BC

ownstream of Fischamend ( Fig. 24 a). The inflow BC is applied as a

ischarge BC as in Pankratz et al. (2007) , and the otuflow BC is im-

lemented as a flux boundary condition based on water levels ( Dutykh

t al., 2011; Ghidaglia and Pascal, 2005 ). The simulation domain is

oughly 10 × 7 km 

2 large and the simulation cell size is set to 4 by 4 m.

he bathymetry is given on a raster with 2 m resolution. The Manning

oughness coefficient n varies spatially between 0.03 and 0.13 m 

1/3 /s.
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Fig. 24. Lobau historical flood, Austria. (a) Discharge and water level time series used as boundary conditions at the Danube. (b) Simulated and measured water 

levels at the gauges. 
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t is estimated based on the land use. Hourly measured water levels are

vailable at three locations, PD.LP1, PD.LP16 and PD.LP18. They are

isplayed alongside the simulated data in Fig. 24 b. The simulated wa-

er extent after 2.5 days is displayed in Fig. 23 b. The exact initial state

s unknown and there is also an operated weir at the Gänsehaufentra-

erse, which might explain the small differences between the observed

nd the simulated flood waves at the gauge locations as it was mod-

lled as a constant bathymetry modification. Taking into account those

ncertainties, the measured water levels are predicted very well by the

imulation. 

. Conclusion and future work 

We derive and test a new formally second-order finite volume

ethod (FVM) scheme for the shallow water equations. The scheme is

ell-balanced, as it preserves both the still water and lake at rest steady

tates, and does not exhibit any oscillations. Instead of reconstructing

he discharge slopes, we reconstruct the velocity slopes to obtain robust

hoices of the wave speeds at wet-dry fronts, ensuring fast simulations.

he scheme is particularly suited for implementations on graphics pro-

essing units (GPUs), thus enabling faster than real-time simulations for

arge domains. 

A numerical convergence analysis demonstrates that the scheme is

econd-order accurate. Validation against several benchmark tests, in-

luding multiple Riemann problems, reveals that the scheme converges

gainst the reference solutions in most cases. Still, there are some scenar-

os where the solver does not produce satisfactory results. The scheme

s able to reproduce real-world flood events such as the Malpasset dam
106 
reak and a historical river flood in Austria. On test cases with shal-

ow flow over abrupt topography, the new scheme achieves superior

esults than existing schemes. These improvements are due to an im-

roved hydrostatic reconstruction (HR) procedure and a novel adaptive

econd-order reconstruction strategy, which enables accurate resolution

f shallow flow down a bottom step. Moreover, our proposed scheme

nly requires modification of a few lines of code when compared to the

R scheme of Audusse et al. To sum up, the scheme is able to capture

omplex flows over complex terrains accurately and efficiently as shown

n the numerical test cases, all the more in the presence of thin water

ayers. 

The scheme can be applied to unstructured grids, as the source

erms are evaluated on a subcell basis, only the slope reconstruc-

ion needs to be revisited. In real world cases, the friction term

lays an important role in predicting the correct evolution of the

ood extent. We are planning to improve our scheme by balanc-

ng moving water in the presence of friction to gain better estima-

ions of water levels and wave arrival times. Further work is directed

o combine the scheme with an infiltration model for rainfall-runoff

imulations. 
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