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Abstract:  We study deflecting sub-kilometer sized 

potentially hazardous asteroids that may collide with 
Earth by deploying a kinetic impactor. The momentum 
delivered by the impact of a spacecraft may sufficiently 
alter the asteroid’s orbit and henceforth avoid an impact 
with our home world. While near-Earth asteroids of this 
size are difficult to observe, they are believed to be very 
common and to consist of a wide variety of materials 
with varying bulk densities. 

Apart from directly transferring momentum from 
the projectile to the target, post-impact effects of a ki-
netic impact will cause material to be ejected from the 
impact site. This material will carry additional momen-
tum and hence increase the target’s momentum after the 
impact, translating to a momentum transfer efficiency 
b > 1 which is only weakly constrained due to the un-
known target material and porosity. In an effort to con-
strain this b factor, we study the impact of a spacecraft 
onto an asteroid similar in size to the secondary body 
“Didymoon” of the binary near-Earth asteroid (65803) 
Didymos, the target of NASA’s Double Asteroid Redi-
rection Test (DART1) and ESA’s Hera2 mission con-
cepts. 

We present results from simulations with our own 
3D smooth particle hydrodynamics (SPH) hyperveloc-
ity impact code. Depending on the impact angle and tar-
get porosity, we find b factors between 1.15 and 1.93, 
which is compatible with results obtained in a previous 
study and by others using various methods. Real-time 
analysis of the simulated impact process and the result-
ing surface features will allow us to align simulation re-
sults with observations of the ESA Hera mission, further 
constraining material and porosity parameters of the 
mission target. 

Method and Simulations: 
Impact simulations.  We deploy our 3D smooth par-

ticle hydrodynamics (SPH) hypervelocity impact code 
(e.g., [10, 12, 5]) that implements elasto-plastic contin-
uum mechanics, a fragmentation model for fracture and 
brittle failure [4, 1], and the P - 𝛼 porosity model [7]. A 
tensorial correction as outlined in [11] warrants first-or-
der consistency. 

 
1 https://www.nasa.gov/planetarydefense/dart 

In the impact simulations, we resolve each scenario 
in 1M SPH particles. The physical system underlying 
the simulations is based on a rocky cuboid section of 
Didymoons’s surface corrected for a surface curvature 
corresponding to an assumed target diameter of 160 m. 
This results in a resolution of about 50 cm in the simu-
lation scenarios. Target porosities range from 0 % (com-
petent rock) to 75 %. The projectile is modeled as a sin-
gle aluminum SPH particle with a mass of 500 kg that 
hits Didymoon at 6 km s-1 and impact angles of 0° 
(head-on) and 45°, respectively. 

The total momentum carried away to infinity by es-
caping ejecta enhances the momentum transferred to the 
target by a factor b. We calculate this b factor post-sim-
ulation as described in [9]. 

Impact visualization.  The simulation results (point 
cloud data) are visualized using the Aardvark open-
source platform for visual computing, real-time 
graphics, and visualization developed at VRVis. Aard-
vark is able to handle large simulation datasets in the 
terabyte-scale. 

Results and Conclusions:  Figure 1 shows the sim-
ulated domain of the target along with the impact ejecta 
at 0.4 s after the impact. The velocity components in xyz 
direction are rgb color coded: with the impact site being 
in the xz-plane, green corresponds to the velocity com-
ponent perpendicular to the target’s surface. 

 

  
Figure 1: Simulation showing a patch of Didymoon’s 
surface with ejected material 0.4 s post-impact as seen 
from two different viewing angles. See text for details. 

 
Table 1 lists the b factors resulting from different 

assumed target porosities and impact angles. The results 

2 https://www.esa.int/Safety_Security/Hera 

1466.pdf51st Lunar and Planetary Science Conference (2020)



suggest a systematically smaller momentum enhance-
ment factor for increasingly porous target material. Our 
results are compatible with independent studies that pre-
dict the momentum transfer efficiency using different 
methods such as scaling models [2, 3, 6] and a different 
SPH impact code [8] (see Fig. 2). 

 
Table 1: Results for various impact configurations and 

porosities of the target. 

Impact angle Target porosity b factor 
Head-on (0°) 0 % 1.93 
Head-on (0°) 20 % 1.52 
Head-on (0°) 50 % 1.27 
Head-on (0°) 75 % 1.15 

45° 0 % 1.79 
45° 20 % 1.70 
45° 50 % 1.49 
45° 75 % 1.31 

 
With Hera surveys of the vicinity of the DART 

crater down to an expected resolution of 10 cm and 
comparing these observations to VRVis-powered visu-
alizations of the simulation outputs, we expect to con-
strain Didymoon’s material, porosity, and internal struc-
ture. Once the final mission parameters of DART are 
available, we plan to run higher-resolution simulations 
down to the survey-resolution of 10 cm. 

 

 
Figure 2: Comparison with existing results (b corrected 
for impact velocity vp: b-1 ~ vp3µ-1, [6]). References: [6] 
Holsapple & Housen (2012), [8] Jutzi & Michel (2014), 
[3] Cheng et al. (2016), [2] Cheng et al. (2017). 
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