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Real-time Approximation of Photometric Polygonal Lights

CHRISTIAN LUKSCH, VRVis Research Center
LUKAS PROST, rmDATA
MICHAEL WIMMER, TU Wien

Fig. 1. Photometric point lights (le�), a typical simplification of photometric area lights used in real-time
rendering systems. Our real-time technique (middle) provides a well-defined illumination in the near-field of
the light sources, closely resembling the reference solution (right) rendered with 5000 point lights.

We present a real-time rendering technique for photometric polygonal lights. Our method uses a numerical
integration technique based on a triangulation to calculate noise-free di�use shading. We include a dynamic
point in the triangulation that provides a continuous near-�eld illumination resembling the shape of the
light emitter and its characteristics. We evaluate the accuracy of our approach with a diverse selection of
photometric measurement data sets in a comprehensive benchmark framework. Furthermore, we provide
an extension for specular re�ection on surfaces with arbitrary roughness that facilitates the use of existing
real-time shading techniques. Our technique is easy to integrate into real-time rendering systems and extends
the range of possible applications with photometric area lights.
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1 INTRODUCTION
Accurate simulation of illumination from real-world luminaires is an essential requirement in
lighting design and architectural planning. In simulation tools, these luminaires are typically
referred to as Photometric Lights. Their emission characteristics are provided by photometric
measurement data and a geometric primitive, such as a polygon or disk, de�ning the region
of emission. Typically, o�ine rendering algorithms are used in this context, including indirect
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illumination with complex light interactions. However, this makes work processes slow and limits
interactivity. Real-time rendering systems with physically based shading are starting to overcome
this restriction. They provide very convincing image quality with support of photometric point
lights [Donzallaz 2019] that are already widely used for architectural visualization. While there are
numerous real-time solutions for surfaces with di�use emission [Drobot 2014; Heitz et al. 2016;
Lecocq et al. 2016], area lights with direction-dependent intensity pro�les remain a challenge for
real-time rendering.

In this paper, we present a real-time approximation of photometric polygonal lights providing a
well-de�ned near-�eld illumination depicting the shape of the light emitter and its characteristics
(Figure 1). Our technique (middle) uses a numerical integration technique based on a triangulation
to calculate the di�use shading at reasonable additional costs compared to the point representation
(left). We introduce an optimized sampling strategy, combining a dynamic point with �xed sample
positions to build a triangulation of the integration domain. This provides suitable sample weights
for the integration and a continuous illumination while avoiding sampling artifacts. We evaluate
the accuracy and performance using a diverse selection of photometric data sets. Furthermore, we
provide an extension for specular re�ection onmircofacet surfaces by deriving an energy-equivalent
di�use emitter as substitution and applying the Linearly Transformed Cosines (LTC) [Heitz et al.
2016] method. Our technique can be easily integrated into existing real-time rendering systems
and enables convincing noise-free shading with polygonal photometric lights. Previously this was
only possible using o�ine rendering methods.

2 BACKGROUND
In this section, we give an introduction to photometric lights and their representation in a rendering
system. Next, we summarize related work and recent advances in the �eld of rendering algorithms
and real-time approximations of area lights.

2.1 Photometric Lights
In lighting design and illumination engineering, photometry is used to evaluate, describe and
characterize the photometric performance of luminaires. Far-�eld photometry is the current industry
standard and virtually all commercially available data is acquired using this procedure [DiLaura
et al. 2011, 9.24]. Measurements of luminous intensities are taken from relatively large distances and
described as a spherical function � (\ ,q). This data can be used to calculate the illumination, created
by a luminaire, as anisotropic point light source. For di�use emitters it is proven that if the distance
is greater than �ve times the maximum dimension of the emitter the error is less than 2%. This “�ve
times rule” has been adopted for practical applications of far-�eld photometry [DiLaura et al. 2011,
10.10]. In rendering and lighting design software far-�eld photometric data can be imported using
IES or LDT �les. In addition to the luminous intensity distribution, these �les provide information
on the size of the luminaire and the size of the luminous area. Including the geometric shape allows
illustration of a plausible near-�eld illumination. Verbeck and Greenberg [1984] presented an early
system following this work�ow, where light-emitting surfaces are evaluated as a collection of
anisotropic point lights. A more general system and elaborated rendering kernel in this context is
Radiance [Ward 1994]. In order to allow validation of lighting design tools using photometric data,
the Commission International de l’Eclairage (CIE) has provided a collection of test cases [Ashdown
et al. 2006].
Accurate calculation for short distances requires near-�eld photometry. In particular, there are

two classes of methods. Application-distance photometry models the luminaire as a set of measure-
ments from several distances and uses the same procedures as with far-�eld photometry. However,
this kind of data cannot be extrapolated to planes that are tilted with respect to those measured. In
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order to overcome this limitation, Ashdown [1993; 1995] introduced luminance-�eld photometry,
where the �eld of light surrounding a luminaire is measured. Using this data, the illuminance can be
calculated at any point, but the size of the data can be di�cult to manage [Ashdown and Rykowski
1998]. This type of measurement data is typically available for light sources (lamps, LEDs, etc.) and
used by luminaire manufacturers to design optics and re�ectors. However, near-�eld photometry
is not used in practice in the �eld of lighting design due to its complexity and is therefore not part
of our research agenda.

2.2 Related Work
Monte Carlo methods. Distributed ray tracing [Cook et al. 1984] and path tracing [Kajiya 1986]

are the most general algorithms used in computer graphics and allow the calculation of global
illumination and fuzzy phenomena, such as soft shadows, motion blur and depth of �eld. In these
algorithms area lights with arbitrary intensity pro�les or textured surfaces can be described in an
inherent way. In general, light transport can be formulated either as an integral over solid angles
or over all surfaces [Shirley et al. 1996]. Recently, several reviewed and new specialized methods
for sampling of rectangles [Ureña et al. 2013], disks and ellipses [Guillén et al. 2017] and spherical
caps [Peters and Dachsbacher 2019; Ureña and Georgiev 2018] have been presented. Techniques
to distribute samples according to the product of two functions, such as used in image-based
lighting [Burke et al. 2005; Clarberg et al. 2005; Estevez and Lecocq 2018], could also be applied to
photometric lights.

Using Monte Carlo rendering algorithms in real-time is very challenging as only very low sample
budgets can be used per frame resulting in heavy noise. Nevertheless, advances in GPU accelerated
ray tracing and new de-noising techniques exploiting temporal re-projection [Mara et al. 2017;
Schied et al. 2017] or extended �lter domains, such as texture [Munkberg et al. 2016] or path space
�ltering [Binder et al. 2019], extend the horizon of feasible real-time applications. Hybrid solutions
can also provide otherwise hard to achieve e�ects at reasonable costs. Heitz et al. [2018] combined
analytic area light illumination with sampled shadows and list other possible applications.

An alternative rendering algorithm that is similarly well suited to render arbitrary area lights is
Instant Radiosity [Keller 1997]. It is the foundation of many-light rendering methods and there is a
wide variety of improvements. We refer to the survey of Dachsbacher et al.[2014] for a detailed
summary. Advantages are that this algorithm is not susceptible to noise and is very scalable, making
it interesting for real-time applications [Hedman et al. 2016; Laurent et al. 2016; Lin and Yuksel
2019; Luksch et al. 2019].

Point approximations. Assuming full visibility, di�use emission and di�use receiver an area light
integral can be sampled using a single point. This point is called theMost Representative Point (MRP).
Although the optimal point can only be found using an expensive calculation, simpli�cations provide
plausible results. Based on this concept, Wang et al.[2008] developed their approach for textured
lights. Recent techniques [Drobot 2014; Karis 2013], integrated into real-time rendering systems
with physically based shading, provide meaningful normalization and include specular re�ections.
Lagarde and Rousiers [2014] propose Structured Sampling as a more accurate approximation.
Adopting such a technique for photometric lights might be able to overcome the limitations of �xed-
point representations. In Section 4 we will share our experiments on adopting these approximations
to photometric lights.

Analytic solutions. Certain geometric con�gurations allow light transport calculation with exact
analytic solutions. A lot of methods have been adopted from the �eld of radiative heat transfer
analysis and applied to Radiosity [Goral et al. 1984] calculations. There the di�use radiative energy
transfer between surfaces is described by so-called form factors. Baum et al. [1989] use an analytic
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solution for the transfer from polygon to point. Thismethod has found applications in numerous real-
time techniques [Heitz et al. 2016; Luksch et al. 2013; McGuire 2010]. Lagarde and Rousires [2014]
summarize other practical analytic solutions for disks and spheres.

While the above solutions are limited to di�use surfaces, Arvo et al. [1995] introduced Irradiance
Tensors that allows formulating non-di�use transport functions. However, their solution is restricted
to the Phong distribution and has impractical runtime complexity. Lecocq et al.[2016] solve these
drawbacks and provide a real-time shading technique for surfaces with microfacet BRDFs lit by
polygonal area lights. Heitz et al. [2016; 2017] use a di�erent approach and apply a pre-processing
step to approximate area light shading using Linearly Transformed Cosines (LTC) that can be
evaluated analytically in real-time. As a complete di�use and specular light transport is important
for consistent renderings, we will provide an extension to our photometric light approximation
based on this method for specular re�ection.

Complex light sources. Heidrich et al. [1998] introduced Canned Light Sources to speed up global
illumination with complex light sources by substituting them with a pre-computed light �eld. Such
an approach is also related to the application of near-�eld photometry. Mas et al. [2008] presented
a compression and importance sampling method for near-�eld measurements registered to a mesh
of the light source. Their method uses aggregated anisotropic point lights on the boundary surface
for the illumination of the scene. Kniep et al. [2009] store photons with directional information
on a user-de�ned boundary surface of a virtual luminaire. Velazquez-Armendariz et al. [2015]
pre-compute anisotropic point lights and a radiance volume to accelerate the global illumination of
the exterior and the rendering of the luminaire appearance. Krösl et al. [2017] presented a system
based on photon tracing and a multi-resolution image �ltering technique to generate virtual far-�eld
measurement data of luminaires with complex re�ector geometries for interactive prototyping.

3 METHOD OVERVIEW
In this section, we introduce the foundation of our real-time approximation for polygonal photo-
metric lights and discuss our decisions. The re�ected radiance ! at a point G in view direction l>

of a photometric light de�ned in the area A can be expressed as the following integral over A:

!(G,l> ) =
1
�

π
A
5A (x,l8 ,l> ) � (�l8 )

(l8 · nG )
| |G 0 � G | |2 3G

0, (1)

where � is the surface area of A, 5A is the Bidirectional Re�ectance Distribution Function (BRDF),
l8 is the incidence direction pointing from G towards G 0, � is the function of measured radiant
intensity and =G is the surface normal of G . We use the normalization of 1/� since photometric
data represents the absolute emission of a luminaire and the modeled area should not a�ect the
illumination intensity. In this paper, we focus on re�ected radiance assuming full visibility. Thus
we omit the visibility term, putting our approximation in the same line as other real-time area
light shading techniques. Our technique is picking up similar strategies as used with point-based
approximations, such as the Most Representative Point (MRP) method [Drobot 2014] or Structured
Sampling [Lagarde and Rousiers 2014]. Unfortunately, simpli�cation is di�cult. The function of
radiant intensity � is evaluated using l8 and is de�ned by measurement data. Also, the de�nition as
an area integral containing 1/| |G 0 � G | |2 makes a robust approximation for all constellation of G
and � di�cult. To simplify this problem, we reformulate ! as an integral over solid angles. This
implies that we need to transform the radiant intensity function � depending on the direction l to
the radiance !4 (l) emitted from the area � using the following substitution:

!4 (l) =
� (l)

� (l · n�)
, (2)
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where n� is the surface normal of the light-emitting area. Note that this does not allow the expression
of light transport to points in the plane of the light emitting-area, where l · n� = 0 and potentially
introduces numerical issues at glancing angles. We have still chosen this reformulation as � is often
0 or relatively small in these directions and we have found a simple workaround to overcome this
limitation (see Section 5.3).

Secondly, we consider a solution for di�use and specular transport light separately and continue
by replacing the general BRDF by a di�use BRDF 5A =

d
c . This allows the BRDF to be moved out of

the integral. Together with the radiance substitution (Equation 2), we rewrite Equation 1 for the
di�use re�ected radiance !3 as an integral over solid angle ⌦ subtended by the light source:

!3 (G) =
d

c

π
⌦
!4 (�l8 ) (l8 · nx)

⌧

3l8 (3)

We use this equation as basis in our approximation. The geometric term⌧ together with 1/(�l8 ·n�)
of !4 represents a smoothly changing term over the solid angle ⌦ subtended by the light source.
This increases our expectations to �nd a practical real-time solution at reasonable costs. In Section 4
we discuss di�erent sampling strategies to approximate Equation 3 and conclude with our technique
in Section 5 and its evaluation in Section 6. Finally, we provide a solution for specular re�ection in
Section 7.

4 SAMPLING STRATEGIES
Given is a photometric light de�ned in a polygonal region where the measured radiant intensity is
emitted from. We have separated the di�use shading !3 and transformed it to an integral over the
solid angle subtended by the region in Equation 3. In this section, we review sampling strategies
and simpli�cations used for di�use area lights and explore their practicability to approximate this
integral.

4.1 Structured Sampling
Lagarde and Rousiers [2014] use structured sampling to approximate direct lighting of di�use area
lights. Instead of using many randomly chosen samples as it is common in Monte Carlo integration,
a small number of well-selected samples are used to cover the integration domain, i.e., the area
of the light source, su�ciently. The probability density function (PDF) can then be assumed to be
constant, reducing the solution to the calculation of an average. Applied to Equation 3 we get:

!3 (G) =
d

c

⌦

#

#’
8=1

!4 (�l8 ) (l8 · nG ). (4)

The selection of samples is crucial for the accuracy and visual quality of the approximation.
Lagarde and Rousiers use the four corner points and the barycenter of an area light, which yields
good results for di�use emitters. However in our case, with varying !4 , as soon as the emission
pro�le of a light becomes less di�use, sample patterns become visible. Figure 2 (b) shows this
technique used with a data set with high directionality. It can be seen that the samples can be
distinguished based on the illumination near the light source. This shows that sampling the corners
and the barycenter is not a reasonable choice for arbitrarily emitting area lights.

Although there is room for improvement, such as an increased number of samples, we strive for
a more e�cient solution. Next, we elaborate on a di�erent sampling strategy.
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(a) Reference (b) Corners + Center (c) Center

(d) CP (e) MRP (f) NP

Fig. 2. Comparison of a reference rendering of the ARCOS data set, a luminaire with directed emission (see
Section 6) to various approximations, generated by using di�erent simple sampling strategies to calculate the
light transport of Equation 3.

4.2 Dynamic Points
Instead of using several well-chosen samples, Drobot [2014] approximates area lights by a single
sample. His technique is a form of importance sampling where only the most important sample is
used to approximate the whole function. The position of this sample on the light source is referred
to as the Most Representative Point (MRP). Its position depends on the spatial relation between
the illuminated point and the light source. As an exact solution would be too expensive, the"'%
is typically derived from spatial heuristics. For di�use area lights only the geometry term of the
rendering equation needs to be considered:

(l8 · nG )
kG 0 � G k2 (5)

We again use the geometric term from area to point, as it is used by Drobot and suitable for
this approximation. The maximum of this term is approximated by �nding the maximum of the
numerator and the minimum of the denominator respectively and combining the result to get a
single point. We refer to the position of the sample which maximizes the numerator as Normal
Point (#% ) and the position of the point which minimizes the denominator as Closest Point (⇠% ).
The intersection point of the area with the half-vector between these two points form the"'% . To
generalize this, we refer to such points as dynamic points. Our consideration is that these points
might be suitable candidates to evaluate Equation 3 and provide a meaningful estimate. Note, in
order to allow all points to be suitable candidates we have adapted the construction procedure of
Drobot and clamp #% and⇠% to the nearest point on the light-emitting polygon. The corresponding
illustration is shown in Figure 3.
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NP

CP

MRP

x

Anx

αα

Fig. 3. The 3 dynamic points: normal point #% , closest point⇠% and the most representative point"'% . The
position of the points on the area light � depends on the spatial relation to G .

Using solely any of these points does not generate pleasing results (see Figure 2, bottom), but
we can learn about their characteristics. The"'% is in most cases a good average for the overall
intensity, while the closest point is most important in de�ning the shape of the illumination, but
overshoots in intensity. Obviously, a sampling strategy covering the entire area of the light source
is necessary for the application with photometric lights. Therefore, in our method, we combine
Structured Sampling with Dynamic Points. Next, we complement the sampling strategies with a
suitable integration method and elaborate our technique.

5 OUR TECHNIQUE
We propose to combine Structured Sampling with Dynamic Points as introduced in Section 4. Our
experiments showed that these strategies appear to complement each other. While a dynamic point
provides sampling pattern-free approximations of area lights, it does not cover the integration
domain su�ciently, which, in contrast, is done by structured samples. We incorporate the closest
point ⇠% in our sampling strategy, as it is the most important point in de�ning the shape of the
illumination. Finally, we evaluate Equation 3 at the combined sample positions and use a cubature
technique based on a triangulation to get suitable sample weights.

5.1 Cubature based on a triangulation
A dynamic point can be anywhere on the light source, therefore it can come close to structured
samples or even overlap them. This implies that the Monte Carlo estimator in Equation 4 (structured
sampling) cannot be used, because the uniformness of the sample set, which is required to justify
the use of the Monte Carlo estimator with a uniform PDF, is lost. In order to approximate the
integral of !3 , we adopt a cubature method of scattered data used in Geomathematics [Freeden
et al. 2015, p. 1206]. It is based on a triangulation, which provides a partitioning of the integration
domain and allows to calculate appropriate sample weights. Given a triangulated sample set ⇡ on
a sphere the cubature is:

&# =
’

48 9: 2⇡

5 (G8 ) + 5 (G 9 ) + 5 (G: )
3

| 48 9: | (6)

The samples G8 , G 9 and G: do not lie on a common line and are in counterclockwise order as viewed
from the center of the sphere (see Figure 4). | 48 9: | is the spherical excess of the triangle:

| 48 9: | = U8 + U 9 + U: � c (7)
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where U8 , U 9 and U: are the angles of 48 9: .

x

xk

xixj

Fig. 4. Illustration of a spherical triangle as used by the cubature. The vertices are ordered in counterclockwise
order relative to the center of the sphere.

Typically, a Delaunay triangulation is used to partition the area fairly and to avoid thin long
triangles. It is given when the empty circumcircle interior property is valid for all triangles [Renka
1997]. For a spherical quadrilateral {8, 9,:, ;} the condition is:

(G 9 � G8 ) ⇥ (G: � G8 )
k (G 9 � G8 ) ⇥ (G: � G8 )k

· (G; � G8 ) > 0 (8)

The resulting weighting scheme makes this integration technique well suited for our combined
sample set, as long as we can build a meaningful triangulation. Next, we explain how this integration
method is incorporated in our shading procedure.

5.2 Shading Procedure
The �rst step is to build a triangulation of our integration domain bound by the polygon and include
the closest point. This needs to be performed for every shading point G . As only visible parts of the
polygon contribute to the shading, we clip the polygon by the horizon plane of G . The next step
is to �nd the closest point ⇠% on the clipped polygon. Therefore, G is projected onto the light’s
plane and then clamped to the polygon if it is outside. In both cases, fully visible and clipped, there
are three positional relationship cases for ⇠% : 1. inside the polygon, 2. clamped to an edge or 3.
clamped to a vertex (Figure 5). Clipping will also add an edge with two new vertices, E0 and E1 .

CP

VbVa Va

Vb

CP

CP CP

CP Va/CP
Vb

Fig. 5. Illustration of positional relationship cases of the closest point⇠% (red): 1. inside (le�), 2. edge (center)
and 3. vertex (right); when the polygon is fully visible (top) and partly clipped (bo�om). A valid triangulation
is given by building a triangle fan around ⇠% .
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Fig. 6. Visualization of violations of the Delaunay condition (red regions) when using our triangulation
scheme. In case the polygon is fully visible and not clipped by the horizon of the shaded point the condition
is always fulfilled (le�). On surfaces where the polygon is clipped and the closest point does not coincide
with a corner the triangulation o�en violates the Delaunay condition (right).

Considering only convex polygons, a simple rule to get a valid triangulation in all cases is to create
a triangle fan around⇠% . Before continuing with the radiance integration, we transform all vertices
into tangent space and normalize them to get the vertices of our spherical triangles.
As for our intended integration method an even triangulation is suggested, we have evaluated

the compliance of the Delaunay condition using Equation 8. Considering the 2d-case in Figure 5
we notice that the condition is ful�lled for all unclipped cases (top). We can also con�rm this in a
3d scene for spherical triangles (Figure 6 left). Regions violating the condition (red) are sparsely
visible. In clipped cases, we can observe that this condition is often violated when the closest point
is on an edge (right). We have experimented with updating the triangulation at runtime and have
concluded that this is not worth the computational costs and too complex for general polygons.
Therefore, we directly continue with the radiance approximation using a triangle fan around ⇠% .

An accompanying illustration of the following procedure is depicted in Figure 7. Applying the
cubature technique of Equation 6 to solve Equation 3, we get:

!3 (G) =
d

c

’
48 9: 2⇡

!8⌧8 + ! 9⌧ 9 + !:⌧:

3
| 48 9: |, (9)

where !8 is short for !4 (G8 ) introduced in Equation 2 and ⌧8 for ⌧ (G8 ) in Equation 3. However, we
can see that this would cause a sample at the horizon plane (nG · l8 ) = 0 to get 0 weight. This
excludes the closest point and vertices at the horizon from contributing to the sum in certain light
constellations. Even close above the horizon the weight is inappropriate and thereby makes this
scheme impractical. In order to avoid this and to reduce the impact of potential extrema in ! and⌧
we replace their product by the product of their averages:

!3 (G) =
d

c

’
48 9: 2⇡

!8 + ! 9 + !:
3

⌧8 +⌧ 9 +⌧:

3
| 48 9: | (10)

This weighted sum over all triangles constitutes the di�use shading at a point G with a polygonal
photometric light. Since the triangulation scheme of our method can generate thin triangles when
the closest point moves towards a vertex, the calculation of the spherical excess | 48 9: | (Equation 7)
needs to gracefully converge to 0 for degenerated triangles. Therefore, we use the vector form [van
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X

CP
nx

A

ω

(a) Tangent Space of G

ω

(b) Light Coordinate System

Fig. 7. Illustration of our method. The polygonal light � with constructed closest point ⇠% is projected into
tangent space of the point to shade G (a). Radiant intensity is sampled by rotating a sample direction l into
the light coordinate system orientation (b). The triangulation gives the samples weights for the shading
calculation.

Oosterom and Strackee 1983]:

tan
✓
1
2
⌦

◆
=

0̂ · (1̂ ⇥ 2̂)
1 + (0̂ · 1̂) + (0̂ · 2̂) + (1̂ · 2̂)

, (11)

where ⌦ = | 48 9: | and 0̂, 1̂, 2̂ are the normalized vectors to the vertices of the spherical triangle.
This provides a robust solution in case any of the vectors become identical.

All steps described in this section are executed in a fragment shader. The overall procedure has
linear runtime complexity depending on the number of vertices, respectively the number of triangles
and edges. For details, we refer to the shader code in the supplemental material. There, the clamping
algorithm of ⇠% is limited to convex polygons, as well as our triangulation scheme. The number of
vertices is con�gured with 4 as this is su�cient for our application, but the implementation can
handle general polygons.

5.3 Numerical Robustness
We want to elaborate on our countermeasures for the numerical limitations of the radiance substi-
tution (Equation 2). The formulation does not allow us to calculate shading of points within the
polygon plane, but photometric data often requires this. In particular, there are two counteracting
expressions. The radiance becomes in�nite (1) due to the division by (l · n�) and the solid angle
of the polygon converges to zero (2). This also introduces numerical issues close to the polygon
horizon. The images of Figure 8 have been rendered with no precautions to prevent numerical
issues. In a typical view (a) visual artifacts can be noticed by occasionally popping of individual
pixels. In a closeup of the illumination within the polygon horizon (b) the numerically unstable
band becomes clearly visible. In the scenario where the light is parallel to a surface and then is
moved till both surfaces touch (e.g. moving the light in (a) to the ceiling), the entire surface is
susceptible to such artifacts. In order to avoid these artifacts and circumvent the limitation, we
shift the shading point away from the horizon at the beginning of our procedure, if it is inside a
certain epsilon region. At the same time, we calculate an opposite shift that is applied to the sample
directions when evaluating the intensity pro�le to get a continuous illumination. We decided to
skip the opposing shift of the lookup vector in the �nal implementation as we could not notice any
discontinuities after tweaking the size of the epsilon region.
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0.01m

0.01m

Fig. 8. Images generated without any precautions to prevent numerical issues. In typical conditions (a) almost
no artifacts are noticeable. A closeup of the illumination at the horizon shows the manifestation of the
singularity introduced by the radiance substitution in Equation 2.

5.4 Summary
Our integration method given in Equation 10 represents a weighted average of the area light’s
radiance for a point G to calculate the di�use shading of a polygonal photometric light. Including
the closest point ⇠% adds a dynamic point in relation to G and provides a continuous transition
when G moves. The size and shape of the integration domain depend on the relation of G and � (see
Figure 7). For most positions it will be relatively small and for constellation with large solid angle,
we include ⇠% to stabilize the result. Assuming the light has a constant intensity pro�le, hence it is
an omni-directional point light, we only need to solve the integral for (nG · l8 ) by (�l8 · n�) of ⌧
and !4 . Similar to Structured Sampling and the"'% method, our technique solves this su�ciently
(see Section 3 of the supplemental evaluation). When including the intensity pro�le, we need to
transform the lookup-directions l8 from tangent space of G to the coordinate system of the light
source. As this is only a rotation the intensity pro�le is sampled over an equal shaped region.
This allows to conclude possible limitations of our methods. We expect that the approximation
is reasonable if the intensity pro�le’s function is relatively smooth over the integration domain.
Typical intensity pro�les (see Figure 9) indicate that this might be practical. Nevertheless, details
within the sampling region will be missed and intensity variations might occur when the samples
move over details in their transition. We will continue this discussion during the evaluation in the
next section.

6 EVALUATION AND RESULTS
In order to benchmark the accuracy of our real-time approximation technique, we have selected
7 intensity pro�les from a luminaire manufacturer [Zumtobel 2019] that each has its own char-
acteristics to challenge our method (see Figure 9). Our evaluation process tests all photometric
pro�les under normalized conditions. The scene contains a ground plane with normal =6 and
an area light of 1 ⇥ 1 units at heights of {0.1, 1.0, 2.5} units above the ground and orientations
of cos�1 (=� · =6) 2 {c/2, 5/8c, 3/4c, 7/8c, c}. We render images from a top down view with a
�eld of view covering a region of 5 units around the light source. We apply tone mapping with
!3 (G,~) = !(G,~)/(1 + !(G,~)) of !(G,~) = (0.05/!F) ⇤ !F , where !F is the logarithmic average
luminance. The reference image (row 3) is rendered with the method of Urena et al. [2013] using
20,000 samples. The next row shows our approximation Cubature (row 4) and the di�erence images
at height 0.1 and orientation c/2 (row 5). Our method always provides well-de�ned shapes of the
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Fig. 9. Intensity profiles of the luminaires we use in our evaluation (row 1) [Zumtobel 2019]. Screenshots from
our showroom scene with luminaire models linked to the selected data sets (row 2). The reference renderings
from our evaluation setup with ⌘ = 0.1 and orientation c/2 (row 3). Approximation images rendered using
our Cubature method (row 4). False color di�erence images (row 5) where red areas are too bright and blue
areas are too dark. The columns are labeled with a short name of the data set.

illumination that all appear convincing without a reference image. Looking at the di�erence images
reveals certain tendencies of our method. It works very well for almost di�use intensity pro�les
(SLOTLIGHT & PERLUCE). Looking at more directed pro�les (ARCOS & PANOS), the light cones
appear too wide. We suspect this is caused by the dominance of the closest point. We also notice
that there are some structures in regions that should be smooth (MIREL & LINETIK). In these
cases they are caused by a rectangular cross-section of the intensity pro�les when viewed from
the polar axis. Our approximation reproduces this variation in the near-�eld where the dynamic
point moves along the edge of the polygon. Likewise, in cases where the intensity pro�les has �ne
details or tiny peaks (INTRO) they are emphasized due the moving point, but the rendering still
appears plausible and produces a robust approximation of the remaining illumination. In practice,
most intensity pro�les are rather smooth as luminaires are measured in large distances where
caustics are typically absent and luminaire engineers often optimize for uniformity. Another fact
that accommodates our technique is that the near-�eld is typically the brightest region in an image
and highly compressed by tone mapping. Textured surfaces or variations of the surface normal
also make it harder to recognise intensity variations as artifacts (see Figure 12). We found that our
approximation is well suited for real-world data sets. We refer to the supplemental material for
the evaluation results of all con�gurations and to the accompanying video for a demonstration.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 1, Article 4. Publication date: May 2020.



Real-time Approximation of Photometric Polygonal Lights 4:13

The interactive segment renders 16 photometric light simultaneously and includes point-based
shadows using cube shadow maps.
Additionally, we have quanti�ed the di�erence using the NRMS error metric. Figure 10 shows

the combined result for each data set per height, calculated from stitched images containing all
orientations. The error correlates with the di�erence images, but does not directly imply the
plausibility of the generated images. An example are the data sets with directed intensity pro�les
of ARCOS and PANOS, the visual appearance suggest a very good approximation, but is actually
not that accurate due to the slightly distorted shape of the outline.

Fig. 10. NRMS error calculated from stitched images showing the illumination of all 5 di�erent light orienta-
tions at polygon heights of 0.1, 1.0 and 2.5 units.

Finally, we evaluate the performance of our method. Table 1 lists the frame times in HD and UHD
resolution, with di�use shading, no visibility test, tone mapping disabled and a 4-channel 32bit
�oating point frame bu�er, measured on two di�erent hardware systems. Our method is bound by
its computations in the fragment shader and scales linearly with the resolution. The baseline is
given by the Point approximation, performing a single lookup on the intensity pro�le and only
calculating the distance attenuation to the centroid of the polygon. Our method (Cubature) takes
about four times longer while using 4-5 samples in typical cases. The reference implementation
(MC 8) is able to perform Monte Carlo integration with 8 random samples slightly faster and would
allow about 10 samples at equal time. The combination with a 16 pixel radius separated Gaussian
de-noising �lter (DN 2x16) is much more expensive. A visual comparison of the Monte Carlo

Table 1. Frame times of our method (bold) and others.

NV RTX 2080 Ti NV GTX 1070 Ti
Method 1080p 2160p 1080p 2160p
Cubature 0.41 ms 1.70 ms 1.12 ms 4.56 ms
Cubature + LTC 0.77 ms 3.15 ms 1.81 ms 7.38 ms
Point 0.11 ms 0.40 ms 0.17 ms 0.67 ms
MC 8 0.33 ms 1.41 ms 0.89 ms 3.51 ms
MC 8 + DN 2x16 0.94 ms 3.02 ms 2.17 ms 9.30 ms
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Fig. 11. Comparison of a Monte Carlo solution with 8 samples (MC 8) and its de-noised image (MC 8 + DN
2x16) to our method (Cubature).

solution and our method is shown in Figure 11. Please note that our de-noising method is intended
to provide a performance reference and does not represent any state-of-the-art implementation.
We have selected the ARCOS and SLOTLIGHT data sets where our method has the highest and
lowest error. The MC solution is able to provide a consistent level of quality over all data sets, but
de-noising artifacts can be visible. In comparison, our technique produces a noise-free and similarly
convincing illumination in shorter time. Our extension for specular re�ections (Cubature + LTC,
see Section 7) is also well suited for real-time applications.

7 SPECULAR SHADING EXTENSION
In order to provide a full shading solution for physically based rendering systems, we propose
an extension for the specular re�ected radiance !B . In the extreme case, when the BRDF is a
perfect re�ection, we can directly evaluate !4 (l) using the re�ected view direction. In other cases
generalized by a microfacet BRDF with arbitrary roughness, we need to calculate a convolution
with the BRDF over a certain region or the entire area in the other extreme. We simplify this general
case by assuming the extreme, and calculate an energy-equivalent radiance !4 to a di�use area
light and use this as supplement for specular shading. We then perform the shading calculation
with the Linearly Transformed Cosines (LTC) [Heitz et al. 2016] method:

!B (G,l> ) = !4 · !)⇠ (G,l> ,�), (12)

where the function !)⇠ approximates the convolution of the specular part of the BRDF 5A and the
area light� represented as polygon. The constant factor !4 can be derived by setting the expression
of Equation 3 equal to the light transport of a di�use light:π

⌦
!4 (�l8 ) (l8 · nx) 3l8 = !4

π
⌦
(l8 · nx) 3l8 , (13)
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Fig. 12. Real-time rendering of photometric lights with our method and specular shading extension. The
shadows are rendered point-based using cube shadow maps.

and solving it for !4 :

!4 =

Ø
⌦
!4 (�l8 ) (l8 · nx) 3l8π

⌦
(l8 · nx) 3l8

⌧⌦

(14)

The resulting equation for !4 means that we need to normalize the integral for the di�use illumina-
tion of Equation 3 by the integral of the geometric term⌧ , that we call⌧⌦ . This integral term is well
studied and real-time approximations, such as Structured Sampling or the"'% method, provide
reasonable approximations. Likewise, our cubature technique achieves similar accuracy for di�use
emission (see Section 3 of the supplemental evaluation). This allows us to base the calculation of
!4 on our cubature method and approximate ⌧⌦ alongside with !3 (G) (Equation 10) at almost no
additional costs:

⌧⌦ =
’

48 9: 2⇡

⌧8 +⌧ 9 +⌧:

3
| 48 9: | (15)

We then use ⌧⌦ according to Equation 14 and calculate the energy-equivalent radiance !4 to a
di�use area light:

!4 =
!3 (G)
⌧⌦ (3G)

(16)

The energy-equivalent radiance !4 is then used to calculate the specular re�ection by applying
the LTC shading technique (Equation 12). Figure 12 shows two renderings of a scene shaded from
multiple photometric polygonal lights using our method and this extension.

8 CONCLUSIONS AND FUTUREWORK
Our real-time approximation technique of photometric polygonal lights provides a valuable exten-
sion to real-time rendering systems. Our cubature generates noise-free illumination in the near-�eld
of area lights at reasonable costs and closes the gap to stochastic methods. We have shown its prac-
ticability on a variety of data sets and achieved results closely resembling the reference renderings.
Our extensions for specular shading provide a complete solution for physically based rendering
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facilitating existing techniques for di�use area lights. We see potential in numerous applications,
particularly in architecture visualization and lighting design.
In our evaluation we could identify artifacts due to high-frequency details in the measurement

data. This issue could be addressed by introducing a pre-processing step for the intensity pro�le
to provide pre-integrated data at runtime. For example, a hierarchy of smoothed representations
could provide a robust average, depending on the shading point, and reduce banding artifacts like
the ones visible in the false color images in Figure 9. Additionally, the limitation to polygonal light
shapes suggest to extend our method with specialized solution for linear and disk shaped lights.
Adding a �xed or second dynamic point to our cubature technique can increase accuracy at minimal
additional costs. However, for applications with a high demand on accuracy, elaborated o�ine
rendering techniques might be more suitable. In this �eld, it would be particularly interesting to
evaluate the applicability of Product Importance Sampling techniques for photometric lights.
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