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Kurzfassung

Die automatische Segmentierung von Tumoren auf verschiedenen Bildgebungsmodalitä-
ten unterstützt Ärztinnen und Ärzte bei der Diagnose und Behandlung von Patienten.
Magnetresonanztomographie (MRT), Computertomographie (CT) oder Positronenemis-
sionstomographie (PET) zeigen den Tumor in einem unterschiedlichen anatomischen,
funktionalen oder molekularen Kontext. Die Fusion dieser multimodalen Bildinformatio-
nen führt dabei zu einem umfassenderen Gesamtbild und ermöglicht genauere Diagnosen.
Bislang wurde das Potential der multimodalen Daten nur von wenigen etablierten Seg-
mentierungsmethoden verwendet. Weit weniger erforscht sind multimodale Methoden,
die den Tumor nicht nur auf einer Bildmodalität segmentieren, sondern mehrere modali-
tätsabhängige Tumorsegmentierungen liefern.

Ziel dieser Diplomarbeit ist es eine Segmentierungsmethode zu entwickeln, die den
multimodalen Kontext nutzt, um die modalitätsabhängigen Segmentierungsergebnisse zu
verbessern. Für die Implementierung wird ein künstliches neuronales Netzwerk verwendet,
das auf einem Fully Convolutional Neural Network basiert. Die Netzwerkarchitektur wurde
entworfen, um komplexe multimodale Merkmale zu lernen und somit effizient mehrere
Tumorsegmentierungen auf unterschiedlichen Modalitäten vorhersagen zu können.

Die Evaluierung erfolgt anhand eines Datensatzes bestehend aus MRT- und PET/CT-
Scans von Weichteiltumoren. In einem Experiment wird untersucht wie sich unterschied-
liche Netzwerkarchitekturen, multimodale Fusionsstrategien und verwendete Modalitäten
auf das Segmentierungsergebnis auswirken. Das Experiment zeigt, dass multimodale
Segmentierungs-Modelle zu signifikant besseren Ergebnissen führen als Modelle für ein-
zelne Modalitäten. Vielversprechend sind auch die Ergebnisse der multimodalen Modelle,
die mehrere modalitätsabhängige Tumorkonturen gleichzeitig segmentieren.
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Abstract

The automatic segmentation of tumors on different imaging modalities supports medical
experts in patient diagnosis and treatment. Magnetic resonance imaging (MRI), Com-
puted Tomography (CT), or Positron Emission Tomography (PET) show the tumor in
a different anatomical, functional, or molecular context. The fusion of this multimodal
information leads to more profound knowledge and enables more precise diagnoses. So
far, the potential of multimodal data is only used by a few established segmentation
methods. Moreover, much less is known about multimodal methods that provide several
modality-specific tumor segmentations instead of a single segmentation for a specific
modality.

This thesis aims to develop a segmentation method that uses the multimodal context to
improve the modality-specific segmentation results. For the implementation, an artificial
neural network is used, which is based on a fully convolutional neural network. The
network architecture has been designed to learn complex multimodal features to predict
multiple tumor segmentations on different modalities efficiently.

The evaluation is based on a dataset consisting of MRI and PET/CT scans of soft tissue
tumors. The experiment investigated how different network architectures, multimodal
fusion strategies, and input modalities affect the segmentation result. The investigation
showed that multimodal models lead to significantly better results than models for single
modalities. Promising results have also been achieved with multimodal models that
segment several modality-specific tumor contours simultaneously.
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CHAPTER 1
Introduction

Medical imaging plays a vital role in modern cancer therapy. Anatomical, molecular,
and functional imaging biomarkers provide unique diagnostic information to improve
diagnosis and treatment. Combining two or more of these acquisition methods is also
called multimodal medical imaging and leads to a more encompassing view of the human
body [Eur15]. Multimodal imaging is widely used as it is a useful tool for early cancer
detection. The most popular method of analyzing these images is the visual assessment by
the medical expert. Computer-aided image analysis has great potential to assist medical
experts as it provides automated image interpretation. In cancer therapy, automatic
tumor segmentation can support medical experts to enable better patient diagnosis and
treatment [MNML18].

1.1 Motivation
In cancer therapy, tumor segmentation is used in particular for visual assessment, ra-
diotherapy, and biopsy planning. The manual segmentation of the tumor is very time-
consuming for the radiologist, thus an automatic computer-aided tumor segmentation is
a clear benefit [MNML18]. Automatic tumor segmentation on medical scans is also an
increasingly important area in the treatment of soft tissue sarcomas. Soft tissue sarcomas
need special care due to the high variability of the occurrence and high malignancy of
this cancer type [NH14]. A carefully planned biopsy and a succeeding surgical removal
are critical for the therapy outcome. During these procedures, the contamination of
healthy tissue must be avoided entirely, because this may lead to later resection with
larger tissue loss or even amputation [WLBS07].

For soft tissue tumors, the most important diagnostic imaging modality is MRI, providing
the best soft tissue contrast. Furthermore, the hybrid PET/CT scanner is essential for
cancer therapy, as it identifies suspicious metabolic functions in the body and provides
anatomical context at the same time [WS18]. The combination of MRI and PET/CT
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1. Introduction

is beneficial for differentiating between necrosis and vital tumor tissue, thus allowing
medical experts to perform a targeted biopsy of vital tumor parts [KF10]. Automatic
segmentation of soft tissue sarcomas can be an essential support for image-guided biopsy
and surgery, as well as radiotherapy [MNML18, Bea11].

The desired segmentation result depends on the application area. For example, in
radiotherapy, only the high metabolic areas are of interest, but in image-guided biopsy,
the whole tumor is of interest. The combination of both segmentations can be of great
value to enable safer patient care and a better response to treatment. The richer context
of complementary imaging techniques has the potential to improve the accuracy of
computer-aided segmentation. If multimodal imaging enables health professionals to
make better diagnoses, then multimodal data may also be beneficial for computer-assisted
tumor segmentation procedures.

1.2 Problem Statment

The emerging deep learning techniques have great potential to solve automatic tu-
mor segmentation tasks [LKB+17b]. However, most methods work on single imaging
modalities, e.g., brain tumor segmentation on MRI, lung tumor segmentation on CT
[LKB+17b]. Only a few studies have investigated deep learning segmentation models
using more than one modality. These few multimodal segmentation studies report a
better segmentation result when using multimodal images than single-modality images
[DLHG20, ZLLT18, VPR+18, TFYT16, HDWF+17, IKW+18]. However, there has been
little agreement on how to combine different image modalities in deep learning to improve
the segmentation outcome. Moreover, far too little attention has been paid to the major
accompanying challenges of multimodality in deep learning: The same tumor may appear
differently in each modality, and thus the radiologist’s segmentation of the tumor is
dependent on the modality. It is not well established on how to train a model on different
ground truths for different modalities. Each modality, such as MRI, CT, and PET,
has unique image features, but they often require the same image processing methods
to perform the segmentation task. So far, modality-specific segmentation has mostly
been developed in separate models. A significant limitation of this type of application is
that the potential of cross-modal information is not fully exploited [VPR+18]. However,
the combined usage of all available modalities in a shared model could be an essential
contributing factor that improves the segmentation performance for each modality. This
leads to the need for developing a deep learning model for tumor segmentation on multi-
modal medical images. This thesis investigates how to integrate the manifold information
into one segmentation model to improve modality-specific segmentations.

1.3 Aim of the Thesis

The goal of this thesis is the development of an automatic tumor segmentation pipeline
for volumetric multimodal data. The pipeline includes a artificial neural network (ANN),
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1.4. Methodological Approach

which is based on a fully convolutional neural network (FCN) to perform the multimodal
co-segmentation task. The segmentation result provides modality-specific tumor masks,
which are segmented on a subset of the input modalities.

This thesis analyses the impact of the multimodal learning strategy and focuses on the
following research questions:

Q1. Would the use of multimodal images improve the segmentation result of a modality-
specific segmentation? Which modality combinations have a major impact on the
segmentation result?

Q2. Is it possible to combine the modality-specific models into one model in order to
segment several modality-specific tumors and still achieve efficient performance
results?

Q3. How does the multimodal fusion design of the network influence the segmentation
result?

Q4. Is multimodal learning better suited for certain network architectures, or is the
proposed fusion strategy network-independent?

To answer these questions, an experiment is conducted using a novel 3D FCN model for
multimodal learning. Figure 1.1 illustrates the input and output of the segmentation
model in a simplified way.

1.4 Methodological Approach
The methodological approach consists of the following steps:

Design and implementation of the segmentation pipeline
Based on state-of-the-art literature, a multimodal segmentation pipeline is designed
and implemented. In this diploma thesis the following key tasks are addressed:
Data preprocessing: To prepare the data as input for the segmentation model,
specific preprocessing methods for 3D multimodal medical image data are used,
such as registration, resampling, and modality-specific intensity normalization.
Tumor segmentation model: The main part of this thesis deals with the design and
training of a convolution neural network for tumor segmentation on multimodal
image data. Various multimodal fusion strategies are proposed and combined with
state-of-the-art network architectures. The focus is on the implementation of the
architectural fusion strategies for efficient multimodal segmentation.

Experiment
The new segmentation pipeline is evaluated on a publicly available soft tissue
sarcoma dataset [VFSEN15]. To assess the effectiveness of the multimodal fusion
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1. Introduction

Figure 1.1: ModelM takes multimodal data as input and performs modality-specific
tumor segmentation on selected modalities.

strategy, an experiment is conducted to investigate different combinations of input
modalities, encoder and decoder designs, and network architectures.

1.5 Structure of the Thesis
The diploma thesis is composed of eight chapters and is organized in the following way:

Chapter 2 Soft Tissue Tumors: Clinical Practice and Medical Imaging gives
an overview of the anatomy of soft tissue tumors and presents relevant medical imaging
techniques for diagnosing soft tissue tumors.

Chapter 3 Introduction to Fully Convolutional Neural Networks for Image
Segmentation introduces the basic concepts of convolutional neural networks in general
and describes the fundamentals of fully convolutional neural networks for semantic
image segmentation. Furthermore, this chapter explains well-known state-of-the-art
architectures.

Chapter 4 Related Work: Tumor Segmentation on Medical Images reviews the
state-of-the-art work on deep learning for tumor segmentation. It focuses on segmentation
approaches for volumetric images, multimodal segmentation, and soft tissue tumor
segmentation.

4



1.5. Structure of the Thesis

Chapter 5 Methodology describes the design of the proposed segmentation pipeline and
deals with data preprocessing and the multimodal fusion design of the FCN architecture.

Chapter 6 Experimental Design explains the setup of the conducted experiment
and gives implementation details about data preprocessing, network architecture and
model training. Furthermore, the implementation environment and the evaluation setup
is described.

Chapter 7 Results and Discussion analyzes the results of the experiment to assess
how different multimodal fusion strategies and different network architectures affect the
tumor segmentation result.

Chapter 8 Conclusion and Future Work provides a brief summary of the thesis
and the findings, and gives an outlook on interesting future research topics.
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CHAPTER 2
Soft Tissue Tumors: Clinical

Practice and Medical Imaging

This chapter is dedicated to soft tissue tumors and medical imaging in this specific
context. By understanding the underlying dataset, the segmentation algorithm can be
adapted accordingly to improve its performance.

Section 2.1 gives a brief introduction to soft tissue tumors, their diagnosis, and treatment.
The next Section 2.2 describes the relevant modalities of medical imaging for diagnosing
soft tissue tumors: MRI and PET/CT. For both modalities, pertinent aspects of diag-
nostic imaging of these tumors are described. Furthermore, specific challenges in image
processing of MR and PET/CT are discussed.

2.1 Soft Tissue Tumors

Tumors, in general, are caused by genetic changes that lead to an uncontrolled proliferation
of cells, and this resulting cell mass is characterized as a tumor. Malignant tumors
are known as cancer and able to spread into surrounding tissue and intervene in the
physiological processes of the body [Nat15]. The term soft tissue tumor covers tumors
that originate from various tissues, including muscular tissue, connective tissue, and
nervous tissue [JF14]. Only about 1% of all soft tissue tumors are malignant and account
for less than 1% of newly diagnosed malignancies in adults. Malignant soft tissue tumors
are referred to as soft tissue sarcomas. Approximately 75% of soft tissue sarcomas are
classified as highly malignant and lead to reduced survival rates [WLBS07]. The location
of soft tissue sarcomas is mainly in the extremities, especially in the thighs [NH14].
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2. Soft Tissue Tumors: Clinical Practice and Medical Imaging

2.1.1 Diagnosis

Early diagnosis and the succeeding treatment of soft tissue sarcomas are critical for the
therapy outcome. Soft tissue sarcomas need special care due to the high variability of the
occurrence and high malignancy of this cancer type [WLBS07]. The aim of diagnosis is to
describe the tumor extension and a possible infiltration into surrounding compartments.
After a precise anamnesis, medical imaging is used to obtain more information about the
tumor. Figure 2.1 shows soft tissue tumors acquired with different imaging modalities.
If a sarcoma is suspected, a biopsy of the tumor tissue is necessary [FBMS18]. In the
following, diagnostic imaging methods are described chronologically: ultrasound, MRI,
CT, and PET. Finally, medical imaging methods used for an image-guided biopsy are
mentioned.

Ultrasound

For initial staging, a local ultrasound (US) provides first information about the location
and position of the tumor. However, deep lesions are missed, and the noisy resolution of
the US makes it difficult to characterize the tumor tissue. Potentially malignant lesions
recognized by ultrasound are referred to MRI [NHWL+15].

Magnetic Resonance Imaging

The most important diagnostic procedure is MRI, providing the best soft tissue contrast.
MRI describes not only the exact tumor size and anatomical position, but also the rela-
tionship or infiltration of surrounding vessels, nerves, bones, muscles, and compartments
[NHWL+15]. A fat-suppressed and fluid sensitive sequence is preferable. A contrast
enhanced T1-weighted fat-suppressed sequence is also recommended to distinguish better
between tumor tissue and cystic or necrotic areas. In combination with T2-weighted
sequences, a precise differentiation between necrosis and vital tumor tissue is possible,
which allows the targeted biopsy of vital tumor parts [FBMS18].

Computed Tomography and Positron Emission Tomography

Computed tomography (CT) detects bony destructions, infiltrations of bones in anatomi-
cally complex regions, and calcifications. Also, an exact 3D reconstruction of the CT
can be helpful in surgical planning. An advantage of CT compared to MRI is the more
accurate detection of air inclusions and calcifications, which are often not clearly visible
in MRI. The disadvantages of CT are radiation exposure and the relatively low soft tissue
contrast [FBMS18].

If a malignant tumor has been detected, further whole-body-staging is required. Metastatic
spread of soft tissue sarcoma occurs mainly in the lung, but less often in the bones. A
chest CT scan detects pulmonary metastases in the lung, whereas PET or PET/CT
scans are used to detect osseous metastases in the bones [NHWL+15].

8



2.1. Soft Tissue Tumors

Figure 2.1: The appearance of soft tissue tumors in different imaging modalities: (A)
ultrasound, (B) MRI, (C) tumor after resection, (D) pathological examination obtained
from biopsy, (E) PET/CT, and (F) MRI. Adapted from [NYY+15]
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2. Soft Tissue Tumors: Clinical Practice and Medical Imaging

Image-Guided Biopsy

A biopsy is highly recommended for cases where it is difficult to determine from MRI
whether a tumor is benign or malignant, or where the therapy of the tumor depends on
the histology [NH14]. The biopsy aims to obtain an adequate amount of vital tumor tissue
to make a reliable diagnosis. Usually, a few tissue chunks about 2 cm long are needed
for the biopsy. Biopsies are performed as image-guided-biopsies using CT, sonography,
or MRI [FBMS18]. For the biopsy, vital tumor tissue must be taken to identify the
tumor type. Imaging by Doppler US, PET/CT, or contrast-enhanced MRI is helpful to
distinguish between vital and necrotic tissue. A carefully planned biopsy is critical for the
therapy. Surgical removal of the biopsy tract must be possible at the time of surgery. In
the case of malignant tumors, contamination of healthy tissue must be avoided entirely,
because this may lead to a later resection with larger tissue loss or even amputation
[NH14].

2.1.2 Treatment

Surgical resection of the tumor is the most common treatment for soft tissue tumors.
While benign tumors can be removed by marginal resection, wide resection of soft
tissue sarcomas should always be intended. The aim is to remove the entire tumor
with infiltrated compartments, including the biopsy tract [WLBS07]. Also, MRI-guided
marking wires are inserted to support the surgeon to perform a safe wide resection
[FBMS18]. Another treatment method is radiotherapy, which is an essential adjuvant
factor for improving the local recurrence rate in highly malignant soft tissue sarcomas
even after adequate surgical treatment [WLBS07].

2.2 Medical Imaging and Image Processing relevant for
Soft Tissue Sarcomas

In medicine, medical imaging is used to visualize structures, functions, and pathologies
of the human body. The fundamental principle of imaging tools is based on physical
phenomena such as radioactivity, X-rays, magnetic resonance, or ultrasound [Ban08].
A specific imaging technique is also called modality, e.g., MRI or CT. The underlying
physical principle of a modality determines the data acquisition technology and the
quality of the resulting data. Each modality provides a different view of the body. For
example, magnetic resonance imaging provides very good soft tissue contrast, whereas
radioactivity based imaging techniques detect metabolically active areas. Thus, each
modality has its advantages and is more suitable for certain applications.

The following sections focus on MRI and PET/CT as they are the most relevant modalities
in diagnostic imaging of soft tissue sarcomas. The specific features of soft tissue tumors
in relation to MRI and PET/CT are discussed, followed by the challenges of image
processing in this context.
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2.2. Medical Imaging and Image Processing relevant for Soft Tissue Sarcomas

2.2.1 Magnetic Resonance Imaging (MRI)

The human body consists of more than 80 percent of fat and water, both of which contain
hydrogen atoms. A hydrogen atom has a magnetic spin, causing it to rotate around
a fixed axis. Normally this axis is randomly oriented. In an MRI scanner, a strong
electromagnetic field is generated, which forces the randomly aligned axes of the hydrogen
atoms to align with the external magnetic field. By adding a pulse of energy at a specific
frequency to the magnetic field, the hydrogen atom excites, causing the atom to rotate
away from the magnetic field. When the pulse stops, the atoms reorient themselves
to the original magnetic field (relaxation). This relaxation time is measured and gives
information about the nature of the tissue in which the atom is located. Certain tissue
types have different hydrogen compositions, which emit corresponding magnetic signals,
resulting in different image intensity values. Different MRI protocols are obtained by
varying the scanner parameters (echo time, repetition time), each focusing on certain
tissue characteristics. There are several MRI protocols, but T1-weighted and T2-weighted
protocols are the most common ones. T1-weighted protocols emphasize areas with low
water content (bones), whereas in T2-weighted protocols, tissue with high water content
(fat, water) will appear brighter. In MRI scanners, the acquisition technique of the slices
is special because the slices can be acquired in any orientation. This is in contrast to CT,
where the slices can only be acquired in the axial direction [PB14].

MRI in Diagnostic Imaging for Soft Tissue Tumors

MRI is necessary if the ultrasound reveals a suspected malignant soft tissue tumor. MRI
is best suited for a precise characterization of the tumor as it provides the best soft
tissue contrast in comparison to other imaging techniques. MRI is important for the
local staging and is also essential to decide which parts of the tumor should be biopsied
[NHWL+15]. The task of the MRI is to get more information about the tumor size,
extension, location, and surrounding tissues. The morphology of the tumor should also
be described in detail, including necrosis, bleeding, and edema [NHWL+15]. Figure 2.2
shows a patient with soft tissue sarcoma. Usually, different MRI protocols are used to
get more comprehensive information about the tumor.

Basic MRI protocols for soft tissue tumors according to the guidelines of the
European Society of Musculoskeletal Radiology (ESSR) [NHWL+15]:

• Fluid sensitive and fat-saturated sequences: These protocols highlight tissues with
higher water content and suppress fat tissue. Therefore the contrast of the tumor to
its surroundings is enhanced. Related protocols include T2-weighted fat-saturated
sequence (T2FS) or Short Tau Inversion Recovery (STIR) [NHWL+15].

• T1-weighted pre-contrast and post-contrast sequences: Using a native (pre-contrast)
T1-weighted sequence, an initial assessment of the infiltration of the vascular nerve
bundle can be made. The repetition of the same T1-weighted sequence but with
a gadolinium-based contrast agent is used to emphasize the tumor tissue while
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Figure 2.2: Different MRI sequences acquired from a patient with a rhabdomyosarcoma.
(A) Axial T1-weighted MRI sequence. (B) Axial T2-weighted MRI sequence. (C) Coronal
STIR sequence. (D) Post-contrast axial T1-weighted MRI sequence. Adapted from:
[MEZS19]
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suppressing edemas and necrosis. The subtraction image (post-contrast T1 minus
pre-contrast T1) allows a clear differentiation between solid tumor tissue and
non-tumor tissue [FBMS18].

• T2-weighted sequence: T2-weighted sequence is used to further analyze and deter-
mine the type of the soft tissue tumor [NHWL+15].

• Additional protocols: For further differentiation between vital and necrotic tumor
tissue, diffusion MRI or perfusion MRI is used, e.g., diffusion-weighted imaging
(DWI), dynamic-contrast-enhanced MRI (DCE-MRI) [NH14].

Challenges for Image Processing

One major challenge for detecting soft tissue tumors is the heterogenous appearance of
varying tumor types. This leads to different signal intensities in the MRI. Many soft
tissue tumor types show typical signals that can reduce possible differential diagnoses.
For example, myxomas often show a hypo- or isointense signal in the T1-weighted and a
hyperintense signal in the T2-weighted sequences. However, the appearance of lipomas is
exactly the opposite. There is a huge variety of soft tissue tumors with different signal
characteristics, resulting in a rather difficult diagnosis [FBMS18]. As shown in Figure 2.3,
the appearance of a soft tissue tumor can vary considerably even within the same tumor
type.

Another challenge of MR image processing is that the intensity values are not standardized.
The same tissue can have very different intensity values across different scanners. The
human eye can easily handle variations of intensity ranges, while computational image
processing has difficulties with them [PB14]. Typically, the MRI has a high in-plane
resolution, but the slices are more distant from each other. The anisotropic voxel spacing
might be challenging for certain tasks, e.g., the segmentation in 3D.

2.2.2 Combined Positron Emission Tomography and Computed
Tomography (PET/CT)

Positron emission tomography (PET) is a nuclear medical imaging technique acquired in
3D that measures the body’s metabolic activity. Before the tomography, a radioactive
tracer is injected into the patient, thereby making it possible to measure the metabolic
activity of the cells. Tumors have a high metabolism compared to the surrounding body
tissue and are therefore easy to detect [FuZG+15]. CT scanners use rotating X-ray
tubes and detectors that measure X-ray attenuation. CT is a method of acquiring
and reconstructing successive axial image slices of an object in the scanner, e.g., a
human body. The stacking of the slices results in a 3D volume [PB14]. PET can also
be used in combination with other imaging techniques such as CT or MRI to obtain
information about physiology and anatomical structures of malignant tumors. Today’s
technology combines PET and CT in a single scanner known as PET/CT [FuZG+15].
Also, PET/MRI scanners exist, but they are not as widely used as PET/CT scanners in
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Figure 2.3: Soft tissue tumors have a very heterogeneous appearance. Two liposarcomas
(red contour) show different signal intensities in T1-weighted MRIs. Source: [VFSEN15]

clinical practice. As shown in Figure 2.4, a hybrid PET/CT scan provides considerably
more information than a single modality does.

PET/CT in Diagnostic Imaging for Soft Tissue Tumors

The most common use of PET/CT scans for soft tissue sarcomas is for follow-up ra-
diotherapy. It is routinely not recommended for initial staging, but it allows medical
experts to differentiate benign from malignant tumors and thus can be helpful for surgical
planning. In recent years, PET/CT has been increasingly used for soft tissue tumors
[FBMS18]. PET/CT scans are not common practice in biopsy guidance, however, Ki-
nahan et al. [KF10] [p. 2] pointed out that "FDG PET/CT can assist in the decision
to avoid unnecessary invasive tissue biopsy as well as guide such a procedure to a tissue
location where a valid diagnostic biopsy sample can be obtained."

Challenges for Image Processing

The values of the CT scan are standardized by the Hounsfield unit. This leads to uniform
grey values for the same tissue structures and is of great advantage for computer-aided
image processing [PB14]. In a hybrid PET/CT scanner, the resulting PET and CT are
already aligned but do not have the same voxel spacing. In order to achieve a uniform
voxel grid, resampling is necessary. One major issue of PET scans is that they have
noisy signal values and low spatial resolution, which makes small lesions hard to detect.
PET scanners are constructed to measure the concentration of radioactivity in the body
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Figure 2.4: PET/CT hybrid imaging is an imaging technique to visualize anatomical
structures and functional biological procedures at the same time. The patient shows a
tracer uptake in the right lobe of the lung. Source: [FuZG+15]

using the measurement unit kBq/ml. The radioactivity concentration in the body is
directly linked to the tracer concentration. However, only the relative tissue uptake of
the tracer is of interest. The two most significant impacts for inconsistent tracer uptake
are injected tracer quantity and body weight. To compensate for these deviations and
to allow comparison of PET scans across patients, instead of the original PET value,
the standardized uptake value (SUV) is used as a measure for tracer uptake [KF10]. In
order to calculate SUVs, it is assumed that the tracer is evenly distributed throughout
the body, resulting in an SUV equal to one in normal tissue. If there is no tracer uptake,
then the SUV is zero. An SUV of 2.5 or higher is generally accepted as an indicator of
an increased tracer concentration. However, besides in malignant tumor tissue, this effect
is also observed for heart or brain activity or tracer excretion in the bladder [MC08].
Figure 2.5 gives an overview of the value conversion steps for calculating the SUV. The
most common SUV standardization criterion is SUV bodyweight correction. The SUV
is calculated as follows [BMW08], where the standardization value corresponds to the
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correction value of the selected correction method:

SUV = tracer activity concentration [kBq/ml]× standardization value
injected tracer quantity [kBq] (2.1)

Figure 2.5: The recorded PET scan is converted into kBq/ml values using the calibration
factor of the scanner. In practice, SUV is used to quantify the relative tracer uptake.
Source: [KF10]

A major limitation of SUV is the fact that the values are not generally comparable
between different patients. The SUV values can be incorrectly calculated due to many
interfering factors, e.g., post-injection time, biological processes in the human body, or
technical correction algorithms [KF10].
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CHAPTER 3
Introduction to Fully

Convolutional Neural Networks
for Image Segmentation

This chapter gives an introduction to fully convolutional neural networks (FCN), which
have been introduced as powerful method for semantic segmentation of image data.
Section 3.1 explains the fundamentals of artificial neural networks (ANNs) in general.
Convolutional neural networks (CNNs) and their architectural characteristics are discussed
in Section 3.2, followed by FCNs in Section 3.3. Finally, Section 3.3 focuses on FCN
variants and their extensions for efficient handling of volumetric data.

3.1 Artificial Neural Networks
Artificial neural networks belong to deep learning, which is a powerful machine learning
framework. Neural networks act as universal approximators, which makes deep learning
especially powerful. Deep neural networks can not only approximate any desired function,
but they can also represent all kinds of decision boundaries for classification tasks
[GBC16].

The basis of artificial neural networks is a multilayer perceptron (MLP), which is a
class of feed-forward artificial networks. ANNs learn to approximate a certain function
y = f(x). The approximating function is a mapping from the input space to the output
space, which is defined as y = f∗(x; θ). The goal is to learn the values for the parameters
θ that best matches the approximating function f∗ to the function f .

The approximating function y = f∗(x; θ) is usually a composition of simple subfunctions.
This is represented as a directed graph, where each vertex (neuron) applies a certain
function to its inputs. Edges define which functions are combined. Thus, the neural
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network connects simple functions to model a more complex function. All neurons,
which are at the same level, form a layer [GBC16]. Figure 3.1 shows an example of a
feed-forward network. Each layer can be seen as a function, thus the approximating
function f∗is a chained function of the previous layers. The network output is computed
by y = o(h2(h1(x))) where the functions h2, h1, and o represent two hidden layers and
one output layer, respectively.

The layers between input and output layers are called hidden layers. Hidden layers
increase the capacity of the model as they provide non-linear activation functions. During
training, the network learns to approximate the function f . The model automatically
learns how to map the input to the output. This process is called representational
learning. Therefore, the network uses the neurons of the layers, where each neuron learns
a subfunction of the mapping. The representational capacity depends on the selected
hyperparameters of the network, which are given by the number of hidden layers, the
number of hidden neurons, and the type of activation functions. Neural networks with
layers between input and output are called deep neural networks. [GBC16].

Figure 3.1: The feed-forward network consists of a certain number of input neurons x
and output neurons y connected by a flexible number of hidden layers. Adapted from
[Pat19]

Network Training: In the training process, the network learns the approximating
function f∗, which correctly maps the input to the output. Therefore, historical data of
the specific domain is required. For supervised learning, these datasets consist of input
data and corresponding output data. The output data represents what the network
should learn when receiving the input data. The network is trained by adapting the
weights of the neurons to best approximate f . The weights define the strength of the
connections between neurons. Neural networks are hard to train because of the many
unknown weight parameters. Therefore, the weight adaption is a repeated process, where
the model evaluates the current set of weights and changes the weights correspondingly to
reduce the evaluation error. This approach is also known as optimization algorithm. The
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repeated evaluation and weight adaption step is done at the end of an epoch. In one epoch,
all training samples of the dataset are passed through the network so that the network
learns the correct weight parameters. The model aims to reduce the evaluation error to
finally find a certain set of weight parameters that is sufficient enough to approximate f
[GBC16].

The training process aims to finally get a model that performs well on the training set
but also shows good performance when applied to new unseen data. This ability is known
as generalization. In order to improve the generalization, the network must be sufficiently
trained to learn the underlying data distribution. However, if there are too many training
iterations, the model adapts too much to the training set, and will perform poorly on
new data. This effect is called overfitting. Overfitting can be avoided if the validation
set is used to evaluate the model performance at the end of each epoch. The training
stops if the evaluation result of the validation set starts to change for the worse. This
ensures that the model is not overfitting to the training set to ensure good generalization.
Therefore the training process needs both the training and validation set [GBC16].

3.2 Convolutional Neural Networks

The need to develop convolutional neural networks emerged from the fact that MLPs are
not suitable for image data. The MLP architecture cannot efficiently model the spatial
information of the raster-like nature of images. Besides, MLPs quickly reach their limits
because their dense connectivity results in a high number of required parameters that make
training more complicated. In 1989 LeCun et al. [LBD+89] first introduced the concept
of CNNs. Only decades later, Krizhevsky et al. [KSH12] successfully applied CNNs on
image classification tasks and outperformed traditional machine learning methods.

In images, spatially close pixels are highly correlated, thus convolutional neural networks
are designed to exploit the spatial structure of images. To achieve this, the neurons
in the input and hidden layers of CNNs are arranged as a grid. Only neurons that
are spatially close to each other are connected, resulting in sparse connectivity. This is
achieved by using kernels that are smaller than the input. By convolving the input image
with the kernel, the kernel acts as an image filter. This convolution operation takes place
in convolution layers, which are the quintessence of CNNs. CNNs usually consist of a
combination of the following layers: convolution layers, pooling layers, fully connected
layers, and non-linear activation functions. Figure 3.2 provides an overview of a basic
CNN architecture and its layers, which are described in more detail below.

Sparse connectivity requires fewer parameters compared to dense connectivity in MLPs.
The reduction of the parameters allows the network to train faster and, moreover,
the sparse connectivity helps to learn valuable spatial information. By stacking the
convolution layers, the neuron not only gets the information from the previous layer
but can extend its so-called receptive field to all connected predecessors. Therefore,
the feature extraction is hierarchical. Local features are learned in early layers, from
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which more complex global features are derived at a later stage in the network. These
advantages make CNNs ideal for image classification tasks.

Figure 3.2: Convolutional neural networks comprise convolution layers with subsequent
non-linear activation functions, as well as pooling layers for dimensionality reduction.
The final classification is learned from fully-connected layers. Adapted from [Som17]

3.2.1 Convolution Layer

In convolution layers, a kernel is applied to a small region of the input space. The filter
slides over the input space to convolve the entire input. Goodfellow et al. [GBC16] define
the convolution operation for a two-dimensional image I and two-dimensional kernel K
as:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (3.1)

A convolution layer consists of many independent kernels, where each kernel produces one
feature map. Kernels can be seen as filters, which can be of any kind and can produce
e.g., distortion, sharpness, edge detection. One filter shares the same weights with all
neurons of a certain feature map. The concept of weight sharing reduces the number of
parameters and also makes CNNs translation invariant. Thus, the desired object can be
detected at any position in the image.

3.2.2 Non-Linear Activation Functions

Convolutions are linear operations, but to learn non-linear features, non-linear activation
functions are required. Popular non-linear activation functions are rectified linear unit
(ReLU), hyperbolic tangent, and logistic sigmoid [GBC16]. These functions are shown in
Figure 3.3.
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Figure 3.3: Popular non-linear activation functions in CNNs.

3.2.3 Pooling Layer

In order to reduce the computational costs, a dimensionality reduction is needed. There-
fore pooling layers are invented to decrease the spatial size of the representation via
local aggregation. The most common type of pooling is max-pooling, where only the
maximum value of the kernel region is taken. Another massive dimensionality reduction
is global-average pooling, where a feature map is reduced to a single value, which is the
average of the feature map. Pooling layers reduce dimensionality to increase training
efficiency, although information on spatial resolution is lost [GBC16].

3.2.4 Fully-Connected Layer

In CNNs, the stacked convolution and pooling layers serve as powerful feature extractors.
However, to classify the extracted features, it is necessary to learn the non-linear combi-
nations of these features. These classification layers are similar to the hidden layers of
MLPs and are characterized by their dense connectivity and known as fully-connected
layers in CNNs. The n-dimensional feature maps are converted to vectors, either by
flattening or by global-average pooling, to be used as input for the fully-connected layers.
The learned features are so powerful that it is sufficient to use only a fully-connected
layer as a simple classifier [GBC16].

3.2.5 Feature Learning

In the training process, the network adjusts the weights of the filter to learn useful image
features. The ability of the network to automatically learn the required representations
is called feature or representation learning. The joint optimization of feature learning
and classification of these features makes CNN a superior image classification method
compared to classical machine learning methods for image processing tasks. Researchers
attempted to understand in detail how CNNs can learn such powerful features. The work
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of Zeiler et al. [ZF14] investigates the feature learning process. Through the hierarchical
learning approach, deeper layers learn to adapt to complex concepts. They reported
that CNNs focus on local image patterns rather than the surrounding image context.
Consequently, to depict a high-resolution image pattern, the model must have a minimum
layer depth to yield better performance. The evolution from simple features to highly
complex features can be seen in Figure 3.4.

Figure 3.4: Learned features from each convolution layer in a CNN. Simple features
are learned in earlier layers. Deeper layers combine already learned features from the
previous layer to build complex features. Adapted from [ZF14]

3.3 Fully Convolutional Neural Networks
CNNs are designed to classify images, but they are not suitable for segmenting objects.
To overcome this limitation, Long et al. [LSD15] introduced fully convolutional networks.
FCNs are an extension of CNNs to perform semantic segmentation. Semantic segmenta-
tion is about the semantic interpretation of an image to allow pixel-level classification to
group the image into meaningful objects. The classification layers (fully-connected layers)
of the CNN are replaced by unpooling or deconvolution layers. These layers transform
the feature maps back to the size of the input. The output of the FCN is the pixel-wise
predicted label map and has the same spatial dimension as the input image. The concept
of the FCN forms the basis of state-of-the-art semantic segmentation architectures. The
fundamental architecture of FCNs is shown in Figure 3.5. The downsampling path works
as a feature encoder, while the upsampling path acts as a feature and localization
decoder.

To actually perform semantic segmentation tasks, CNN is extended to FCN, which adds
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Figure 3.5: FCNs allow semantic segmentation by simultaneously classifying each pixel
of the input. Source: [LSD15] ©2015 IEEE

a decoder to the CNN architecture. With this knowledge, each architectural variant of a
CNN can be converted to an FCN. The following section deals with popular variants of
FCN architectures or CNN variants that can be extended to FCNs.

3.4 State-of-the-Art CNN and FCN Architectures

This chapter deals with selected state-of-the-art CNN and FCN architectures: U-Net,
ResNet, DenseNet, and FCN extensions for volumetric input data.

3.4.1 U-Net

Ronneberger et al. [RFB15] implemented the U-Net, which shows impressive results
for biomedical image segmentation and outperformed former established methods. The
U-Net is based on FCNs. Therefore it uses an encoder path for feature learning and a
decoder path for pixel-wise prediction. To overcome the problem of the lost spatial pixel
location in the upsampling layer, the high-resolution feature maps from the encoding
path are used to map the classified pixel to the correct location. Consequently, the main
contribution of Ronneberger et al. was to add skip connections between the convolution
blocks of the encoder and the decoder path. Before explaining these skip connections, it
is essential to understand the architecture of the U-Net, which is shown in Figure 3.6.
The U-Net is symmetrical in terms of the number of blocks. Each block in the decoder
path belongs to one encoder block at the same level. The encoder consists of several
blocks, where each block comprises two convolution layers and one pooling layer. A
decoder block contains one upsampling layer and two subsequent convolution layer. The
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input of the decoder block is the concatenation of two feature maps: the feature map of
the preceding decoder block and the feature map of the encoder block at the same level.
The concatenation of the learned features from the encoder block to the decoder is the
so-called skip connection, which represents the fundamental architectural approach of
the U-Net. Fine-grained feature maps are passed through the skip connection to find the
correct position for each pixel in the upsampling process.

Figure 3.6: U-Net architecture. The skip connections (gray arrows) preserve the spatial
location of the segmented pixel in the decoder blocks. Adapted from: [RFB15]

3.4.2 ResNet

As the model gets deeper, more complex functions can be learned. Adding layers
is an essential aspect of increasing the capacity of a deep neural network. However,
increasing the capacity does not mean better performance. He et al. [HZRS16] even
stated the opposite, that very deep models are difficult to train and therefore lead to
worse performance than models with fewer layers. They argued that the reason for this
is not the vanishing gradient, which is another common issue in network training. The
vanishing gradient problem can be explained as follows: In the learning process, the
weights of the neurons are updated, calculating the gradient of the loss proportional to
the weight. Backpropagation updates the weights from the last to the first layer. In
networks with many layers, the gradient might become vanishing small after some layers
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so that the weights in the following layers are not updated, which in turn prevents the
learning process.

To clarify the question of how to train the network efficiently, but to maintain the
layer depth, He et al. [HZRS16] proposed an architecture called Deep Residual Network
(ResNet). A ResNet architecture consists of several residual blocks. A residual block
is visualized in Figure 3.7. The concept of the residual block is straightforward: by
simply adding a shortcut connection between the layers the flow of information is passed
directly from the previous layer to the next while skipping the middle layers. The
shortcut connection allows the network to learn identity mappings. The shortcut has no
parameters and is only used to add the feature map from the previous layer to the next
layer but one. The network learns how to use the middle layer, which is represented by
the additive residual function F relative to x. So the identity mapping provides support
on how F(x) can be added to x or removed from x. Therefore the network also learns
how to surpass marginally contributing layers to improve the efficiency of the training.
By using identity mappings, ResNets can support depths of a thousand layers. He et al.
showed that the performance of a very deep network improves with identity mapping.

Figure 3.7: Building block of ResNet. Source: [HZRS16] ©2016 IEEE

3.4.3 DenseNet

The Densely Connected Convolutional Network (DenseNet) is another CNN architecture
designed to reduce the vanishing gradient effect of very deep networks [HLvdMW17].
DenseNet uses the shortcut connection concept of ResNet to ensure maximum information
flow. However, the shortcut connection is not only used to skip a layer, but each layer is
directly connected to each subsequent layer in the block. Figure 3.8 shows the architecture
of DenseNet with corresponding dense blocks. The dense connection between the layers
allows the network to reuse previously learned features. Huang et al. [HLvdMW17]
defines the dense connectivity for layer l as

xl = Hl([x0, x1, ..., xl−1]) (3.2)

where xl is the output of layer l. The transformation of layer l is given by Hl, which gets
as input the concatenated feature maps of the previous layers, defined by [x0, x1, ..., xl−1].
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A significant difference from ResNet is the small number of feature maps for each layer.
Therefore, it requires fewer layers and parameters than ResNet. Another important
change is that instead of adding the feature maps of the shortcuts, they are concatenated.
The concatenation layer requires that all feature maps have the same dimension. Therefore
all layers between the pooling layers are combined to form a dense block. The main
contribution of DenseNet is the collective feature map reuse. Each feature map has
access to previously learned feature maps.

Figure 3.8: Each layer in the dense block is directly connected to each subsequent layer
to ensure the reuse of features. Adapted from: [HLvdMW17] ©2017 IEEE

Semantic segmentation with DenseNet

The innovations of DenseNet can also be beneficial for image segmentation. Jégou et al.
[JDV+17] extended an original FCN to take advantage of DenseNet and U-Net. The
encoder and decoder path of the FCN consists of dense blocks. The upsampling result is
refined with the skip connections known from the U-Net. They connect dense blocks on
the same level. In the decoder path, it is important to upsample only the feature map of
the current dense block and not all the concatenated feature maps from other blocks.
Otherwise, the upsampling of all created feature maps requires too much computational
effort.
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3.4.4 FCNs for Volumetric Input Data

In theory, from an architectural point of view, there are no limits to the input data in
terms of dimension size. All architectures presented so far can be easily adopted from
2D to 3D input data. However, in practice, applying deep learning to medical image
data is accompanied by many challenges, such as memory limitations or computational
complexities. A major concern is to deal with the data size of medical images. Compared
to natural images, large medical images are a severe issue for deep learning networks. For
example, CT and MR data are acquired as 3D sequences, thus resulting in a very large
amount of data for one single data sample. Hence, training becomes a challenge that
requires large computational resources to cope with. Although there has been a trend in
recent years towards networks with full 3D image data, limited GPU resources are leading
to limitations in the network architecture and training efficiency [LKB+17b]. In order
to overcome the problem of lacking resources, several strategies have been developed.
The aim is to reduce the size of training samples but still achieve a three-dimensional
segmentation.

The 2D slice approach is very resource-friendly because training is performed slice-by-
slice. The predicted 2D slices are then stacked together to form a 3D segmentation. If
the computational capacities are sufficient, the entire 3D image can be used as a training
sample [DGY+19, IKW+18, ZLLT18]. The convolution layer uses 3D kernels to create
3D filter maps. The work of Minh et al. [VGNL19] investigated brain tumor and organ
segmentations. They found that full 3D FCNs are superior to any other input dimension
because they take into account the spatial information between the slices.

The 3D patch-based approach is another interesting concept to deal with the lack of
resources but still use 3D images [XTL+18]. Patches are small regions that are extracted
from the overall image. Instead of the image, the patches are fed to the network to perform
pixel-wise segmentation of a patch. Since CNNs are translation-invariant, the learned
features can be predicted at any position in the image, consequently the patch-based
approach is able to reach the same performance as using full images. However, training
with random patches results in longer training time as the network needs more time to
"see" the whole image volume. The patch-based approach is not only beneficial in case
of having memory-constraints, but it can also be implemented if the dataset consists of
images with different dimensions. CNNs use a fixed input dimension to speed up training
time. Therefore, it would be advantageous to use the patch-based approach with a fixed
input dimension instead of using the entire images with variable sizes.

It is already researched that volumetric networks achieve better results because they utilize
the spatial information of 3D images [LKB+17b, MNA16]. To overcome the problem
of resource limitations, while also considering the spatial relationship, a pseudo-3D
approach is proposed [VGNL19, NMW+19, KIH+19]. Instead of using a complete 3D
image, only slices of the volume are taken. The strategy is to train and predict the volume
slice-by-slice but using two or more adjacent slices as context. Minh et al. [VGNL19]
observed that the pseudo-3D approach consumes only 5% of GPU memory compared
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to the full 3D approach. Nevertheless, 3D networks surpass multi-slice networks. In
their experiment, however, the pseudo-3D approach did not show significantly better
performance than using networks with only 2D slices. In contrast, Novikov et al.
[NMW+19] also used a pseudo-3D approach in their study and stated that it worked
better than 2D. The main difference in Novikov et al. [NMW+19]’s Sensor3D network
was a layer called Convolutional Long Short-Term Memory (C-LSTM) to represent the
adjacent sequences. It was shown that the use of C-LSTM in FCNs is an effective
extension for handling sequential data. In conclusion, a well-designed pseudo-3D network
works effectively in case resources are limited. Figure 3.9 shows a visualization of the
Sensor3D network with the pseudo-3D approach.

The 2.5D approach is another approach to deal with resource limitations. The inputs
are intersections of orthogonal 2D slices to train the network with images in the axial,
coronal, and sagittal direction [TFYT16]. However, the 2.5D approach was outperformed
by the pseudo-3D approach [VGNL19].

So far, several approaches for the input dimension have been proposed to deal efficiently
with resources. However, the best results have been achieved with 3D images, because
they can exploit the three-dimensional context [VGNL19], which is important in the
medical area.
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Figure 3.9: Sensor3D architecture with the pseudo-3D approach. A stack of subsequent
slices is fed to the network to train and predict the center slice. Source: [NMW+19]
©2019 IEEE
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CHAPTER 4
Related Work: Tumor

Segmentation on Medical Images

This chapter describes state-of-the-art approaches and focuses on already presented
solutions, that are dealing with the topic of this thesis in a narrower or broader sense.
First, an introduction to medical image segmentation is given. A more detailed descrip-
tion of tumor segmentation follows in Section 4.1. Section 4.2 describes multimodal
segmentation, focusing on multimodal fusion strategies as well as modality-specific co-
segmentation. Finally, already proposed work on soft tissue tumor segmentation is
reviewed in Section 4.3.

4.1 Tumor Segmentation
Initially, deep neural networks were often combined with traditional machine learning
methods. Deep neural networks were only used for feature extraction. The learned features
served then as input to support vector machines [TFYT16], or graph-cut based methods
[WZL+17]. However, more powerful features can be achieved if the ANN is trained using
an iterative process of feature extraction and classification. Up to now, the most advanced
networks are extensions of U-Net, such as V-Net. V-Net was introduced by Milletari
et al. [MNA16] and designed to use 3D images as network input, which is especially
useful for medical images. U-Nets or V-Net variants have been applied successfully
to tumor segmentations, such as brain tumors [HDWF+17, PPAS16, IKW+18], lung
tumors [TFYT16, WZL+17, KFFK20], and liver tumors [CEG+17]. A considerable
amount of research has been carried out for modalities like CT, MRI, and PET, while
studies on ultrasound or microscopy are limited. In most cases, one modality is used
for segmentation, while only a few studies on multimodal segmentation exist. In the
following, some examples of work on tumor segmentation are mentioned. Havaei et al.
[HDWF+17] studied the segmentation of brain tumors and brain pathologies caused by
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ischemic stroke or multiple sclerosis on MRI scans, using the 2D-patch-based approach.
Kumar et al. [KFFK20] used a U-Net based architecture to segment lung cancer on
PET/CT scans with the 2D slice approach. The work of Dolz et al. [DGY+19] showed
great performance for brain tumor segmentations. They used a V-Net with DenseNet
blocks to segment brain tumors on MRI scans with the 3D-patch-based approach.

4.2 Segmentation of Multimodal Images

More recently, image segmentation of multimodal medical data has become of growing
interest. Surveys such as that of Zhou et al. [ZRC19] have shown that there is a growing
body of literature that recognizes the importance of multimodality for accurate tumor
segmentation. Interestingly, their survey shows that the number of papers for non-
deep-learning methods decreases slightly from year to year, albeit there is a significant
trend towards deep learning in multimodal segmentation. Compared to a single modality,
multimodal imaging leads to a more comprehensive view of the human body. Each imaging
modality offers different physical and biological aspects such as anatomical structures,
soft tissue composition, or high metabolic areas. The effectiveness of multimodality
can be illustrated in the case of lung cancer. While CT sometimes makes it difficult
to differentiate between benign and malignant lung tumors, the additional PET easily
detects a malignant tumor due to its high metabolism. However, PET also has its pitfalls,
as it highlights not only malignant tumors, but also organs such as the heart, brain, and
bladder. Therefore, the complementary features of several modalities can be helpful for
the segmentation result and reduce information uncertainty [KFFK20].

Concerning multimodality, the predominant topics are brain tumors in multi-sequence
MRIs and lung tumors in PET/CT. Further information on brain tumor segmentation in
MRI can be found in the survey conducted by Xue et al. [XCQ+17]. There are a few
multimodal segmentation studies agreeing that multiple modalities improve the segmen-
tation accuracy [ZLLT18, TFYT16, IKW+18, PPAS16, GLH+19, KJvdS17]. However,
there was little agreement on how to actually combine different image modalities in deep
learning to improve the segmentation outcome.

For this thesis, we group the fusion approaches into two areas: shared and modality-specific
feature learning. Some papers use input-level fusion, meaning all modalities share one
encoder, so in this case, we have shared feature learning. In contrast, other researchers
use multiple streams to separate the modalities in the encoder, which is modality-specific
feature learning. The shared and modality-specific fusion strategy can be applied to both
encoder and decoder. However, normally only a single decoder is used, as only one tumor
is segmented in one modality. A visualization of the different encoder and decoder fusion
combinations can be found in Figure 4.1.
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Figure 4.1: Multi-stream models. Different versions of shared and modality-specific
encoders and decoders. Adapted from [VPR+18] ©2018 IEEE
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4.2.1 Shared Feature Learning

A shared encoder is used to perform shared feature learning for multimodal data, where
each modality represents one channel in the input space. Consequently, the complementary
data is fused at the beginning. Therefore, the network has no restrictions on how to
learn meaningful relations between the modalities.

To name a few studies utilizing the shared encoder approach, Isensee et al. [IKW+18]
proposed a modified U-Net to perform multi-class brain tumor segmentation. His multi-
sequence MRI dataset consisted of T1-weighted, post-contrast T1-weighted, T2-weighted,
and FLAIR sequences. The input dimension of the network was constructed for four
modalities, each composed of isotropic 3D volumes. Their model achieved top performance
at the Brain Tumor Segmentation challenge (BraTS) [MJB+15]. The work of Myronenko
[Myr19] achieved another superior performance at the same challenge. Due to the limited
GPU power, they reduced the batch size to one, but kept the original 3D dimensions of all
four MRI sequences. Their architecture was based on ResNet. McKinley et al. [MMW19]
used the same MRI dataset, but the FCN architecture was based on DenseNet. The
training was performed slice-by-slice and followed the pseudo-3D strategy, which is
described in Section 3.4.4. Each of the four input channels contained five adjacent
slices of the modality volume. To conclude this section, the literature identifies that
the input-level fusion is the most common fusion amongst deep learning models using
multi-sequence MRIs.

4.2.2 Modality-Specific Feature Learning

Dolz et al. [DGY+19] stated that a shared encoder makes it difficult for a model to learn
a highly non-linear relationship between the low-level features of the different modalities.
They claim that the modalities have meaningfully different statistical characteristics due
to different image acquisition techniques. Their approach was to learn modality-specific
features first and fuse them at a later stage in the network. In this approach, the network
architecture consists of independent modality-specific encoder paths, which are used
to learn features for a certain modality. According to Zhao et al. [ZLLT18] and Dolz
et al. [DGY+19], the modality-specific fusion approach is more capable of learning the
complexity of the latent relationships between the different modalities.

Dolz et al. [DGY+19] used a DenseNet extension to segment brain tissue, where each
modality had its own encoder, but the feature maps between the modalities are shared
through dense connections. The network inputs were fully 3D MRI sequences. Jin et
al. [JGH+19] segmented esophageal tumors for radiotherapy treatment on PET/CT.
The encoder consisted of two streams. The first stream learned features on CT only,
while the second stream used early fusion from both PET and CT. The feature maps of
both streams were then concatenated and served as input for the decoder. The study
of Kumar et al. [KFFK20] dealt with the segmentation of lung cancer on a PET/CT
dataset. They took the same approach as Jin et al. [JGH+19], but used two separate
encoder streams for each modality. Valindria et al. [VPR+18] were one of the few, which
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used unpaired multimodality images from different patients as network input. Unpaired
images are not aligned, which means that they have no identical overlap of corresponding
anatomical regions. Their aim was multi-organ segmentation on MRI and CT scans.
They investigated several fusion strategies for U-Nets with shared or modality-specific
encoder or decoder, respectively. They stated that the best performing network consisted
of modality-specific encoder and decoder, respectively. The network shared only the
last layer of the encoder with both modalities. It is important to emphasize that the
modalities were unpaired. This makes a comparison to the studies with paired multimodal
data difficult, but still, the fusion approach is innovative.

This section provided a brief summary of the literature relating to fusion strategies in
multimodal medical data. Various strategies have been researched, but no agreement on
the best multimodal fusion strategy has been found. From the observed studies, it can
be inferred that there are countless possibilities of fusion methods. The most surprising
aspect found is that multi-sequence MRIs are stated to work better with a shared encoder.
A possible explanation for this is the fact that the data distributions of the sequences are
quite similar compared to PET or CT. Moreover, the majority of the observed models
dealing with complementary modalities used modality-specific encoders or decoders. This
finding corroborates that the modality-specific data distributions might be the crucial
factor in using shared or separate feature learning. Furthermore, Dou et al. [DLHG20]
states that modality-specific encoders and decoders help to normalize characteristics of
complementary modalities, thus result in efficient shared feature-learning. Therefore,
further work is required to establish the effectiveness of the shared and modality-specific
encoder and decoder.

4.2.3 Modality-Specific Co-Segmentation

So far, however, there has been little research about the major accompanying challenges
of multimodality in deep learning: the same tumor may appear differently in each
modality, and thus the radiologist’s segmentation of the tumor is dependent on the
modality. It is not well established how to train a multimodal model to predict multiple
ground truths (modality-specific tumor shapes) simultaneously. To date, there is only one
study that investigated the co-segmentation of tumors in PET/CT using deep learning.
Zhong et al. [ZKP+19] argued that depending on the context, it is advantageous to
segment modality-specific tumor boundaries rather than assume that the boundaries
are identical. Their architecture consisted of two connected 3D U-Nets with modality-
specific encoders and decoders. A schematic illustration of their proposed architecture is
shown in Figure 4.2. The modality-specific encoders extracted the PET and CT features
separately. The feature maps of both encoders were fused and then connected to both
decoders via skip connections. The studies from Dou et al. [DLHG20] and Valindra
et al. [VPR+18] were focused on modality-specific segmentation, although they used
unpaired multimodal patient data. The network used only one modality to predict
the segmentation. Their networks were able to perform the segmentation task on any
modality, regardless of which modality served as input. Valindria et al. [VPR+18] argued
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that there are too little training data to perform organ segmentation, so they investigated
the effects of larger training sets containing different modalities. They proved the benefit
of larger heterogeneous training sets and showed that the network is able to extract
valuable modality-specific features. From their results it can be concluded that networks
with modality-specific encoder and decoder work best. Figure 4.1 shows the proposed
architectures from Valindria et al. [VPR+18]. These findings were supported by Dou
et al. [DLHG20], stating that segmentation of unpaired modalities can be learned in
the same network. They claimed that separate encoders are not necessarily needed for
modality-specific feature extraction and showed that it is sufficient to apply modality-
specific normalization in a shared encoder. The normalization is done by internal layers,
whereas the instance normalization layer turned out to work best. Both studies work
with unpaired data, so their approach has to be evaluated for paired multimodal images,
where multiple images of different modality types exist for each patient. Thus far, the
experimental data are rather controversial, and there is no general agreement about
modality-specific segmentation. Nevertheless, the concept of independent normalization
of modalities has occurred in all studies, yet in different ways; either as normalization
layer or modality-specific encoder.

Figure 4.2: Two parallel U-Nets used for modality-specific tumor segmentation on PET
and CT simultaneously. Encoders are modality-specific and decoders use feature maps
from PET and CT. Adapted from [ZKP+19]
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4.3 Soft Tissue Tumor Segmentation
The research of Guo et al. [GLH+19] is closely linked to this diploma thesis topic. They
already conducted a study on sarcoma segmentation with PET/CT and MRI data and
gained better results with the shared encoder approach than the modality-specific encoder
approach. Guo et al. [GLH+19] did not take into account pre-existing state-of-the-art
FCNs, which allow efficient pixel prediction for the whole image. In their approach,
each pixel is classified individually, by feeding a small patch into the network and then
classifying the central pixel. They used the same public dataset we use in this thesis,
but the registration of the modalities was done using the CT as the target. In contrast,
this diploma thesis uses the MRI as a target image for the registration. This makes a
significant difference because slice distance and pixel spacing adapt to the target image,
and in this regard, CT and MRI have very different characteristics. Details about the
characteristics can be found in Section 6.1.1. Furthermore, in their paper, the images
were cropped to the tumor, whereas in this diploma thesis, the whole MR image was
used for training and prediction.

The study of Blackledge et al. [BWM+19] investigated the segmentation of soft tissue
sarcomas in dynamic contrast-enhanced MRI. They applied eight different machine
learning methods and found that Naive-Bayes worked best. Instead of segmenting the
whole tumor, they created a map to visualize the heterogeneous tissue compartments
of the tumor. They stated that the map is beneficial for radiologists, as heterogeneous
tissues are very typical for soft tissue tumor types.

Holbrook et al. [HBBM19] performed soft tissue sarcoma segmentation using a 3D U-Net.
They gained better results when using both T1- and T2-weighted MRIs, rather than
using just one of them. However, the dataset was very small, with only four samples in
the training set, and therefore the generalization of the model is difficult to assess.

In summary, research on soft tissue sarcoma segmentation has been conducted only rarely.
Only the work of Guo et al. [GLH+19] used four different modalities for segmentation
to investigate the efficiency of multimodality. Their proposed method is not considered
to be efficient, and no attempt has been made to study modality-specific normalization.
According to recent studies [DLHG20, VPR+18], modality-specific normalization is
considered an important aspect of multimodal segmentation.
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CHAPTER 5
Methodology

This chapter describes the developed pipeline for the automatic tumor segmentation
on multimodal medical scans. First, a brief overview of the main pipeline steps is
given in Section 5.1. One important step of the pipeline is the data preprocessing,
which is described in Section 5.2. To perform the multimodal segmentation task, a fully
convolutional neural network is designed. Section 5.3 deals in-depth with the architectural
design for multimodal learning and co-segmentation.

5.1 Pipeline Overview
Several steps are needed to perform semantic tumor segmentation on the original medical
scans. The proposed segmentation pipeline is shown in Figure 5.1. In order to perform
tumor segmentation on unseen patient data, the model has to be trained with a dataset
first. Therefore the implementation of the pipeline is split into two main tasks: model
training and tumor segmentation. The main contribution of this thesis consists of the
following pipeline components:

1. Data preprocessing
The same data preprocessing is required for both model training and tumor seg-
mentation. The preprocessing procedure is used to prepare the data as input to
the model. It includes the multimodal data alignment as well as the preprocessing
of modality-specific intensity values.

2. Model design
The segmentation task is performed with the modelM, which is a fully convolutional
neural network. The FCN architecture must be extended in such a way that firstly,
multimodal data can be used as input, and secondly, multiple tumor segmentations
in modality-specific shapes can be obtained as output. The network architecture
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consists of two main parts: (1) the encoder extracts multimodal features and (2) the
decoder performs pixel-wise classification to segment the tumor.

3. Model training
The modelM must be trained to be able to segment tumors in medical images.
In the training process, the network learns features from the preprocessed dataset
D, which consists of multimodal medical images and corresponding ground truths.
The output of this task is the trained modelM.

4. Tumor segmentation
In this task, the trained modelM is applied to unseen data to perform the tumor
segmentation. The result is the predicted segmentation mask(s) of the tumor.

5.2 Data Preprocessing for Multimodal Medical Images

In deep learning, the quality of the training data has a significant impact on the quality
of the model. Therefore, the model performance depends not only on the network
architecture, but also on the data preparation [LKB+17b]. Artifacts, outliers, noise,
different value ranges, and more can bias the network. By adding preprocessing steps,
data inconsistencies can be corrected and thus helps the model to improve generalization
[KKP06]. The goal is to align the multimodal data and represent it in a common format
in order to access and train the data as efficiently as possible during the network training
process.

This diploma thesis deals with paired multimodal data, which means that several scans of
different modality types were acquired for each patient. Let dataset D = {P1, P2, ..., Pn}
be a set of n ∈ N patients P . Each patient Pi, i = 1, ..., n, is related to a set of
k ∈ N images Ii = {Ii1, Ii2, ..., Iik}. Each image represents a medical scan taken from a
specific modality. Since we use supervised learning, we need corresponding output data
(delineated segmentation masks) in addition to the input data. In the context of this
diploma thesis, a subset of the images in Ii has a corresponding segmentation mask,
which is defined as M i = {M i

l | where l ∈ {1, 2, ..., k}}. The number of segmentation
masks is denoted as m = |M̃ i|. For example, dataset D may consist of n = 100 patients
with an MRI and PET scan per patient and a segmentation mask for the PET scan.
Patient Pi is then related to the image set Ii = {Ii1, Ii2}, whereby Ii1 represents the MRI
scan and Ii2 represents the PET scan. The mask set M i = {M i

2} contains the PET
segmentation mask.

In the context of paired multimodal data, the challenges of data preprocessing have to be
approached from two perspectives: (1) multimodal fusion of images at a patient-level, (2)
modality-specific preprocessing of intensity values for all image modalities of the dataset.
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Figure 5.1: Pipeline for multimodal tumor segmentation. The aim is to obtain multiple
tumor segmentations of modality-specific shapes. The implementation of the segmentation
pipeline consists of two main tasks: model training and tumor segmentation.
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5.2.1 Multimodal Alignment of Medical Data as Input to FCNs

The choice of method for multimodal alignment depends not only on the nature of the
data but also on the model design. In this diploma thesis, the multimodal data is used
as input for FCNs. The goal is to prepare the multimodal data as input to FCNs while
considering the challenges of multimodal data alignment.

Medical images can have varying data attributes, depending mainly on the modality-
specific scanner settings. Medical images can be seen as a region in a physical space that
is defined by these attributes: size (number of pixels), voxel spacing, image orientation,
and image origin [Yoo04]. Multimodal medical data is acquired from different scanners,
each measuring different physical phenomena with varying scanner settings, resulting in
complementary and heterogeneous data. However, complementarity is a key characteristic
of multimodality. This means that the complementary relationship between modalities
creates an essential additional value, which cannot be achieved if each modality is
analyzed individually [LAJ15]. To exploit these relationships, it is important to combine
the modalities without losing or altering information. For this purpose, data alignment
is used to represent multimodal data in a common structure.

Challenges of Multimodal Alignment

The alignment of the heterogeneous multimodal data leads to several challenges on the
data level. Extending the defined challenges of Lahat et al. [LAJ15] in the context of
multimodal medical data, the following challenges arise:

1. Misalignment: Image alignment is the spatial overlap of different scans in a
common reference space. Different anatomical positions between the images are
almost unavoidable due to the varying body positions in the scanners. Not only
the patient position, but also the scanner settings capture the patient in a different
reference space and lead to misaligned datasets [Fir08].

2. Incompatible region sizes: The sizes of the scanned regions vary greatly between
the modalities [LAJ15]. For example, whole-body scans are usually acquired with
PET/CT scanners, while MRI scanners usually only capture a small region of the
body.

3. Different resolutions: Depending on the modality and scanner settings, different
sampling points are used, resulting in different image resolutions [Ban08]. For
example, MRI scans usually have a very high intra-slice resolution compared to
PET scans.

FCN Input Data Structure for Multimodal Data

To use an image as input for an FCN, it has to be converted into a tensor, which is
an n-dimensional array. Additional image metadata, such as image orientation or voxel
spacing, are not provided as network input. Therefore, a popular approach to deal with
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paired multimodal data is to represent each modality as a tensor of the same dimension.
To make it easier for the network to learn the relationship between the modalities, the
image data is transformed into an aligned uniform voxel grid, which is then used as a
tensor. This means that one voxel grid has to overlap perfectly with the other voxel grid
while showing the same anatomical region. This approach has been followed by many
studies [KFFK20, ZLLT18, ZKP+19, HDWF+17], and has proven to be successful.

Multimodal Alignment Steps

The aim is to register the multimodal data in a way that all medical images of a patient
are presented as an aligned uniform voxel grid. Methods to approach these challenges
have already been mentioned in the work of Lahat et al. [LAJ15]. The following steps
for multimodal data alignment were derived from the above-mentioned challenges:

1. Align multimodal images for each patient: The goal of multimodal orientation
is to transform images from different modalities into a common reference space by
defining one modality as the target image and mapping all other image modalities to
this image. Registration is used to perform the alignment task. Through non-regid
registration, a spatial overlap of the anatomy of the image data from the different
imaging modalities in a common reference space is achieved [Fir08].

2. Crop/adjust images to a common target space: Different image modalities
represent physical regions of different sizes. Consequently, the modalities have to
be restricted to a common target space, which represents the region/volume of
interest. The common target space can be, for example, the intersection or union
region of the modalities. If the target space contains region parts that are not
covered by the medical scans, the tensor completion process will result in missing
values that also need to be treated [LAJ15].

3. Resample images to a common target resolution: To ensure that the data
points can be uniquely linked between the medical images, the same resolution for
each image is required. Data resampling is used to adjust the resolution. In the
data resampling procedure, voxels are mapped from the original image grid to the
voxels of the target image grid. In most cases, the mapping requires interpolation
[Ban08].

Figure 5.2 illustrates the multimodal alignment steps.

5.2.2 Modality-Specific Preprocessing of Intensity Values

Depending on the modalities and the diversity of the dataset, different data preprocessing
methods are required. Image intensity preprocessing may include outlier detection,
normalization, rescaling, discretization, or dealing with missing values [KKP06]. Different
value ranges and different data distributions may bias the network in the training and
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Figure 5.2: Preprocessing steps of raw medical images to perform multimodal data
alignment. The aim is to obtain aligned uniform voxel grids for all image modalities.
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prediction phase. Adding preprocessing steps to harmonize the intensity values across the
dataset, helps the model to improve modality-specific and multimodal feature learning
[DLHG20]. For multimodal data, the challenges of intra-modal variation and inter-modal
variation of the images must be considered:

1. Intra-modal variation: One challenge is to train the network with images that
show heterogeneous data characteristics for the same modality type. Intra-modality
variation, such as outliers, noise, value ranges, and other inconsistencies is due to
effects caused by the scanner and does not reflect the biology, which is the actual
important information for feature learning. By harmonizing the image intensity for
each modality type, the knowledge discovery during the network’s training phase
can be improved [DLHG20].

2. Inter-modal variation: Another challenge is the non-commensurability of inten-
sity values of different modality types [LAJ15]. Each modality represents different
physical units, resulting in modality-specific value ranges and data distributions.
The complementary information is not commensurable, which means that we cannot
standardize the intensity values across all modality types. However, the study by
Dou et al. [DLHG20] found that the distributional shift of the intensity values of
different modality types, such as PET or MRI, leads to more challenging learning
of shared features. They showed that modality-specific intensity normalization
improves the training efficiency of the network.

5.3 Model Design
This section deals with the developed model architecture for multimodal feature learning
and co-segmentation. Inspired by the success of fully convolutional neural networks in
multimodal segmentation tasks, we propose a network architecture that extends the
concept of multimodal tumor segmentation: Multimodal encoders and decoders are
merged in a novel way to achieve modality-specific segmentations. This thesis intensively
investigates the multimodal feature learning in the encoder part and the multimodal
co-segmentation in the decoder part. Therefore, the next sections are dedicated to a
detailed explanation of multimodal fusion strategies for encoder and decoder.

5.3.1 Encoder: Modality-Specific Feature Learning

The encoder is the first part of the FCN, and its purpose is to extract powerful features
from the input data. However, there are several options for the design of the encoder
part. The first step is to decide which modalities to choose, as it may not be necessary
to use all modalities to achieve the best result. The input of the encoder is the image
set Iij , j = 1, ..., k of patient Pi. One option is to use a shared encoder, where multiple
modalities are fused at the input-level of a single encoder. This allows the network to learn
shared representations of cross-modality features right from the beginning. Particularly
studies with multi-sequence MRIs, such as T1-weighted and T2-weighted sequences, have
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shown that early fusion improves the performance of the model significantly [ZRC19].
Another option is to use modality-specific encoder paths, where the features are learned
separately for each modality. This is intended to ensure that the network learns advanced
modality-related features and combines them at a later stage. This strategy can be
reasonable because it can be difficult for the network to learn shared features from
a heterogeneous data distribution at an early stage. Amongst studies dealing with
complementary modalities, such as PET/CT, the modality-specific encoders are more
popular. Figure 5.3 shows a schematic representation of various encoder design options
for multimodal data. In Figure 5.3, the first example shows that Ii1, Ii2 and Ii3 are fused
at the beginning, and the features are learned with one single encoder. In the second
example, Ii1 and Ii2 are fused in the first encoder path, Ii3 and Ii4 are fused in the second
encoder path. The last example shows that all three selected modalities have their own
modality-specific encoder path.

From the studies conducted so far, it can be inferred that the encoder design depends
on the modality type: MRI sequences perform better with shared encoders, PET/CT
scans perform better with modality-specific encoders. This finding corroborates that
the modality-specific data distribution might be the crucial factor in using shared or
separate feature learning. To take this idea further, we propose a combination of shared
and modality-specific encoders for the network architecture. Modalities with the same
distribution, such as multi-sequence MRIs, use a shared encoder, whereas modalities with
different data distributions use modality-specific encoders.

5.3.2 Decoder: Modality-Specific Tumor Segmentation

The decoder performs a pixel-wise classification of the features extracted from the
encoder. To achieve multiple modality-specific tumor segmentations, there are several
options to design the decoder part. The network outputs are the predicted modality-
specific segmentation masks of the tumor. The set of predicted masks is denoted as
M̃ i = {M̃ i

l | where l ∈ {1, 2, ..., k}}. To obtain m = |M̃ i| different segmentation masks,
the network needs m different outputs. Therefore, either one decoder with an m-channel
output is used, or m separate decoders are used. In the first case, the learning of the
classification is shared; in the other case, it is separated (modality-specific). Figure 5.4
illustrates the different design options for the modality-specific decoder when using m = 2
segmentation masks.

5.3.3 Multimodal FCN: Encoder and Decoder Selection

The aim is to train a network with multimodal data Iij as input to obtain modality-specific
segmentations M̃ i

l as output. To create a fully convolutional network, an encoder and a
decoder must be combined. As mentioned before, there are different ways to design the
encoder and decoder. Figure 5.5 demonstrates the possible encoder-decoder combinations.

In a next step, the selected encoder and decoder design have to be integrated into a
network architecture for FCNs. Figure 5.6 and 5.7 show a schematic representation of a
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Figure 5.3: Encoder fusion strategies: There are various ways to fuse the features of
the selected input modalities Iij ∈ Pi, j = 1, ..., 4. In the combination matrix, each color
represents a different encoder. White circles symbolize that the modality is not used for
this fusion strategy. For better understanding, three examples are illustrated on the right
side.
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Figure 5.4: Decoder design for modality-specific segmentation output. Two segmentation
masks are predicted for patient Pi, namely M̃ i

1 and M̃ i
3. Three different decoder design

options are presented: (A) The network has a shared decoder with a two-channel output
for M̃ i

1 and M̃ i
3 segmentations, or (B) separated decoder paths for each modality. (C-D)

Two different networks are designed, whereby the first network has one decoder to predict
only the M̃ i

1 segmentation, and the other network predicts only the M̃ i
3 segmentation.
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Figure 5.5: Possible combinations of encoder and decoder designs to perform multimodal
segmentation. The segmentation model uses the input modalities Iij to obtain the
predicted tumor segmentations M̃ i

l . The example network at the bottom illustrates the
encoder-decoder combination of the red line.
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U-Net architecture that was extended to include the encoder and decoder design. These
two figures visualize the encoder and decoder design of the example network of Figure 5.5.
The encoder part in Figure 5.6 is a combination of modality-specific and shared encoders.
Before the nth encoder block, the feature maps from level n− 1 of all encoder paths are
concatenated. This allows the nth encoder block to learn multimodal features from the
previously learned modality-specific features. In the proposed method, each decoder path
receives the feature maps of all encoders via skip connections. This ensures that each
modality-specific decoder gets the complementary features of all modalities to improve
its segmentation performance. Therefore, the U-Net skip connections are implemented
so that all feature maps of the same level of each encoder path are merged. Figure 5.7
shows the modality-specific decoder approach. The architecture of a shared decoder is
similar to the one of a modality-specific decoder, except that two masks are segmented
in one decoder.

50



5.3. Model Design

Figure 5.6: The encoder architecture of the proposed FCN comprises shared and modality-
specific encoders. For multimodal feature learning, similar modalities are fused in the
input layer, such as MRIs. Complimentary modalities use modality-specific encoders to
exploit their features efficiently. The input of the shared encoder contains the concatenated
modalities, each representing one channel of the input layer. All encoders are fused before
the last convolution block.
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Figure 5.7: Proposed decoder architecture: modality-specific decoders are used to achieve
multiple tumor segmentations. The skip connections between encoder and decoder allow
high resolution upsampling, but also transfer the learned features of all modalities to the
decoders.
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CHAPTER 6
Experimental Design

This chapter describes the implementation and evaluation of the multimodal co-segmentation
pipeline, which was presented in Chapter 5. First, the soft tissue sarcoma dataset is
described in Section 6.1. Then Section 6.2 provides the implementation details of the pre-
processing method. For the experiment, we investigated different combinations of input
modalities, encoder fusion strategies, decoder fusion strategies, and network architectures,
which are described in Section 6.3. Section 6.4 deals with model training, followed by the
implementation of the tumor segmentation task in Section 6.5. The evaluation methods
are presented in Section 6.6. Finally, in Section 6.7, the implementation environment is
described.

From the results of the experiments, we expect to gain more insights on how to support
multimodal feature learning to further establish more powerful multimodal segmentation
models. To answer the questions from Section 1.3, we extensively evaluated our proposed
multimodal co-segmentation approach and compared it with several fusion baseline
strategies. The main purpose is to learn how different fusion strategies affect the
segmentation output. In order to evaluate the impact of the fusion strategy on the network
architecture, four network architectures are selected to cross-evaluate the performance:
U-Net, FCN_DenseNet, FCN_ResNet, and Sensor3D.

6.1 Soft Tissue Sarcoma Dataset
For this work, the implemented methods were trained and tested on a public dataset
of soft tissue sarcomas from The Cancer Imaging Archive (TCIA) [CVS+13]. A total
of 51 patients with histologically proven soft tissue sarcomas of the extremities are
analyzed. For each patient Pi, i = 1, ..., 51, one PET/CT scan and one MRI scan
(T1, T2) were acquired before his or her treatment, resulting into four different images:
Iij = {Ii1, Ii2, Ii3, Ii4}, j = 1, ..., 4, where the images refer to the scans of T1, T2, PET, and
CT. Each image Iij is a set of consecutive slices, which belongs to one of the modalities.
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The treatments consisted of surgery with either previous radiotherapy or postoperative
chemotherapy or both. The time interval between PET/CT and MRI scans ranges from
zero to 62 days with a mean score of 21 days. As soft tissue sarcoma can evolve from
different tissue types, therefore many different types of soft tissue sarcoma exist. The
different tumor types present in the dataset are summarized in Table 6.1.

Tumor segmentation was performed by medical experts on the T2-weighted MRI
sequences and PET scans separately. The set of segmentation masks for patient Pi is
defined as M i

l = {M i
2,M

i
3}. Contours defining the T2 tumor region were included in the

dataset, which is provided at the TCIA webpage. The contours were drawn slice-by-slice
manually on the T2-weighted sequence by an expert radiation oncologist. PET tumor
segmentations did not yet exist and have been created by a nuclear physician for this
thesis. It was performed on the PET scan, with the guidance of the corresponding CT.

The MR imaging data includes two sequences per patient: a T1-weighted sequence and
a T2-weighted post-contrast sequence with fat-saturation. A contrast agent is injected to
highlight the tumor areas in the T2 sequence. The MRI scans are collected from different
hospitals acquired on various scanners, thus the T1 and T2 protocols have different
settings for each patient.

PET and CT images were obtained using the same dual PET/CT scanner for all
patients. Before the scan, a Fluorodeoxyglucose (FDG) tracer was injected intravenously.
The post-injection time for all patients ranges from 50 to 240 minutes in the given cohort,
which leads to deviating radioactivity concentrations measured in the PET scan.

Soft tissue sarcoma type Occurrence
Liposarcoma 11
Leiomyosarcoma 10
Malignant Fibrous Histiocytoma 17
Extraskeletal bone sarcoma 4
Fibrosarcoma 1
Synovial sarcoma 5
Other 3

Table 6.1: Number of soft tissue sarcoma types in the soft tissue saracoma dataset from
The Cancer Imaging Archive (TCIA) [CVS+13].

6.1.1 Image Characteristics

The MRI sequences are created at the same time in the MRI scanner, so they are already
co-registered. The pixel spacing, as well as the orientation and size of the acquired image,
are considerably different between patients. A PET/CT scanner constructs the PET
image and CT image in the same scanning procedure. Therefore both images share
the same patient reference space, ensuring that they are co-aligned (registered). The
image specifications are the same for all CTs. However, the PET specifications differ per
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patient. Further details are shown in Table 6.2. The image characteristics of the PET
tumor segmentation corresponds to the PET scan, whereas segmentation on the T2 scan
corresponds to the T2 image characteristics.

Typically, PET/CT images are full-body or half-body scans, whereby MRI scans only
show a small region of the body, for example, a thigh or shoulder. The comparison of
MRI and PET/CT is therefore difficult, as the scan size, voxel spacing, and orientation
of MRI and PET/CT are very different. A sample patient of the soft tissue sarcoma
dataset is shown in Figure 6.1. In the following steps, a registration of PET/CT to the
MRI sequences is necessary to align the patient reference space and gain the same image
characteristics.

Pixelspacing in mm Rows Columns Slicesx-axis y-axis slice distance
CT 0.97 0.97 3.75 512 512 91-311

PET
mean 4.89 4.89 3.27 135.5 135.5 267
min 0.97 0.97 3.27 128 128 91
max 5.46 5.46 3.27 512 512 311

MRI T1/T2
mean 0.78 0.78 5.57 441.8 446.1 36.1
min 0.23 0.23 5.00 192 224 15
max 1.64 1.64 10.00 512 512 69

Table 6.2: Image characteristics of the soft tissue sarcoma dataset with a total of 51
patients: The image characteristics per modality show inter- and intramodal variability.
The pixel spacing and also the number of rows, columns, and slices differ not only
between modalities, but also within modalities. Only the CT scans have the same image
specifications for all patients. Another important aspect is that the image specifications
of the T1 and T2 sequences are the same per patient.

6.1.2 Data Format

In this dataset, PET/CT and MRI scans are available in DICOM format. The MRI
tumor contours are available as RTstruct DICOM objects. In contrast, the PET contours
are saved as coordinate points in a CSV file, having the same patient reference space as
the corresponding PET scan.

6.2 Data Preprocessing

The data preprocessing step is the initial step for both tasks of the implementation of the
segmentation pipeline: model training and tumor segmentation. In this step, the input
data is transformed to prepare it as input for the segmentation model from Section 5.3,
which requires aligned uniform voxel grids as input tensors. For the implementation we
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Figure 6.1: Patient with soft tissue sarcoma in the right thigh. The PET/CT scan (A, B)
captures a large body section but with a significantly lower in-plane pixel resolution. The
PET/CT slices are recorded axially. The MRI sequences, T2 (D) and T1 (E), are acquired
coronally and capture a much smaller region with higher in-plane pixel resolution. The
MRI slice distance of 7.5 mm is much larger than the slice distance of the PET/CT with
3.75 mm. Annotated contours are available for the PET scan (C) and the T2 scan (F).
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used the soft tissue sarcoma dataset from Section 6.1 and followed the steps given in
Section 5.2. Figure 6.2 presents the implemented preprocessing steps.

A. Multimodal alignment of medical data as input to FCNs

1. Align multimodal images for each patient
The MRI scanner acquires different MRI sequences at the same time, and therefore
the T1 and T2 sequences are already registered. The PET/CT scanner also acquires
the PET and CT scans simultaneously, thus PET and CT scans are also registered
[SB08]. An essential aspect is the decision, which image is used as the target
image. We decided to use an MRI sequence as the target image because the
diagnosis and treatment of soft tissue sarcomas are primarily based on MRI scans
[NH14]. Therefore, only the PET/CT scan needs to be registered to one of the
MRI sequences to align all images of the patient.

Multimodal registration: Multimodal data are only statistically dependent, therefore
often information theoretical methods are employed as similarity measures for regis-
tration, such as the mutual information method [LAJ15, KSM+10]. Morphological
modalities, e.g. CT and MRI, show sufficiently similar structures to allow robust
registration. In contrast, PET and MRI scans represent functional and anatomical
data and therefore have fewer features in common, making accurate registration
more challenging [BFF+18].

Rigid and deformable registration of CT to T1: We decided to use the T1 sequence
as the target image and the CT as the source image because T1 and CT have
high intensity values for bones, which serves as a useful reference structure. The
parameter selection for the registration process was based on the research study
by Leibfarth et al. [LMW+13]. They performed rigid and deformable multimodal
image registration using the mutual information method to achieve intra-patient
registration of MRI and CT scans. The registration process consists of two tasks:
rigid and deformable registration. First, a rigid registration from CT to MRI is
performed. The rigid transformation maps the source image to the target image by
using translation and rotation, but without scaling. The rigid registration helps
the later deformable registration to achieve the final result much faster [Fir08].
A deformable registration is a nonlinear coordinate transformation that leads
to a grid distortion [KSM+10]. The body parts of the source image adapt to the
same shapes as the target image. Although the patient is the same, a deformable
registration is useful, because the patient can change the body position between
scans. For example, the legs can be placed closer together. Besides that, biological
or physiological processes take place in the body, such as the filling of the bladder
or the growth of a tumor. The disadvantage of a deformable registration is that
deformations can occur, which are most likely not to be found in reality. To avoid
unrealistically strong compressions or expansions of body parts, a penalty criterion
is therefore added to the cost function, i.e., the bending energy of a thin plate
[KSM+10]. Since soft tissue sarcomas are very slow-growing tumors, it is unlikely
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Figure 6.2: Overview of the data preprocessing steps. The aim is to align the non-uniform
image scans and harmonize the intensity-values as preparation for neural network training.
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that the deformable registration will lead to an incorrect deformation in the tumor
region [NH14].
Registration of PET and PET mask to T1: Since the PET scan and the correspond-
ing PET mask are already aligned with the CT, the resulting rigid and deformable
transformation matrices of the CT registration are used to register the PET and
the PET mask to the MRI.

2. Resize images to a common target space
Since the MRI scan is the primary diagnostic tool for the treatment of soft tissue
sarcomas, we consider the MRI scan as the volume of interest. For most patients,
the MRI scan is a subregion of the PET/CT scan. Therefore, the target space was
defined as the intersection space of all images in the image set Iij .

3. Resample images to a common target resolution
The resampling settings are adjusted to the data characteristics of the MRI to
reduce the number of possible artifacts. The challenge lies in the selection of the
target slice distance and target image orientation since the slice distance of the MRI
scan is often ten times the original in-plane distance. In order to make resampling
as accurate as possible, the original orientation and the original slice distance of
the MRI are used as reference settings. As a result, all modalities of all patients
have the same in-plane resolution, but the image orientation and slice distance per
patient are different. The selected in-plane resolution for the resampled images
is 0.75 × 0.75 mm because it is close to the mean pixel spacing of the T1 and
T2 sequences. More details about modalities and voxel spacing can be found in
Table 6.2. The B-Spline interpolation method was selected because it provides
high-quality results for multi-resolution images and is still computationally efficient
[LGS99].

B. Modality-specific preprocessing of intensity values
Each modality type has different value ranges and different data distributions. The aim
of the modality-specific preprocessing is to harmonize the intensity values across the
dataset to reduce intra-modal and inter-modal variation. For the soft tissue sarcoma
dataset, we define the preprocessing steps shown in Table 6.3.

T1, T2 PET CT masks
outlier detection <0 <0
normalization z-score standardization SUV calculation
rescaling [-1, 1] no rescaling [-1, 1]
discretization {0, 1}

Table 6.3: Intensity preprocessing methods per modality

1. Outlier detection: Each modality type has a specific unit, which lies within
a particular value range. Reconstruction errors or resampling of the data can
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result in values that fall outside the permitted value range of the modality-specific
measurement units. For MRI, there are no standardized values for the signal of
certain tissues, but it is assumed that there is no negative signal strength. Therefore
all negative values were set to zero. PET is measured in the unit Becquerel or SUV.
Both units cannot be negative but have no fixed upper limit.

2. Intensity normalization: Intensity normalization is a common way to reduce
the variance of the data.
z-score standardization: A well-known normalization method is z-score normaliza-
tion [JDT+19]. In order to normalize the image intensities, the z-score standard-
ization is applied pixel by pixel to each volume. The µ denotes the mean and the
σ denotes the standard deviation of the entire volume. z-score standardization is
calculated as follows:

v′ = v − µ
σ

(6.1)

SUV calculation: The original unit of measurement, Becquerel, was converted to
SUV using Equation 2.1. The bodyweight correction method was selected, as it is
the most common one. The SUV unit is used to quantify the tracer uptake, hence
the image intensity values of PET scans can be compared between patients.

3. Rescaling: Min-max normalization is used to set the value range of the MRI and
CT images to an equal interval, which performs a linear rescaling into the value
range -1 to 1 [KKP06]. With the SUV conversion, the PET scan was already set
to a uniform range from 0 to 50.

4. Discretization: In order to perform segmentation with neural networks, the mask
volume must be categorical. Each mask consists of tumor and non-tumor tissues,
which are denoted by 1 and 0 respectively. During the preparation steps, the
interpolation may result in continuous values. The mask values were discretized by
setting a threshold of 0.5.

6.3 Model Design
One important component of the segmentation pipeline ist the model design of the
segmentation method. We implemented the proposed FCN model in Section 5.3. The
model design depends on two aspects: (1) the chosen fusion strategy of the multimodal
data in the encoder and decoder, (2) the chosen network architecture.

6.3.1 Fusion Strategy Baselines: Encoder-Decoder Combinations

In the following, different fusion possibilities for modality-specific and shared encoder and
decoder are described. Since the network consists of an encoder part and a decoder part,
we have to choose matching combinations. The selected encoder-decoder combinations
serve as baseline fusion strategies, which we will evaluate in the experiment. An overview
of the selected encoder-decoder combinations is given in Figure 6.3.
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Figure 6.3: Selected combinations of encoders and decoders: The checkmarked combina-
tions are evaluated in the experiments.
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6.3.2 Network Architecture

As reviewed in Chapter 4, the best performing FCNs are currently extensions of U-Net.
In the literature, no consent about the most suitable architecture for multimodal learning
was found. Therefore, we decided on four different U-Net based architectures, which will
be evaluated with the before mentioned fusion strategies. Each architecture offers its
benefits and can help learn multimodal features:

• FCN_ResNet: One possible architecture is U-Net with ResNet blocks, which we
denote as FCN_ResNet in the following. ResNet blocks provide identity mapping
to support feature learning at a layer-level. This aspect may facilitate feature
learning from different modalities.

• FCN_DenseNet: Another option is U-Net with DenseNet blocks, which we
denote as FCN_DenseNet. The feature reuse of DenseNet blocks may support the
learning of the most important modality-specific features and fuse them automati-
cally at the right level.

• 3D U-Net: Even a simple 3D U-Net might be powerful enough to learn the
required features.

• Sensor3D: To explore the pseudo-3D approach, we chose the Sensor3D network,
which is also based on U-Net.

Initial Experiments for Hyperparameter Settings

Data Dimension: Researchers have already shown that fully 3D input sizes work best,
which is described in Chapter 4. However, in our case, fully 3D images are not feasible
due to GPU limitations. Each patient has scans with different dimensions, varying from
the smallest scan with 200×200×16 voxels to the largest scan with 600×600×50 voxels.
We decided to investigate the 3D-patch-based and the pseudo-3D-patch-based approach, to
reduce the memory resources during training. Different patch sizes are tested to assess the
best-suited patch dimension for network training and prediction. The evaluation results
are measured with the dice similarity coefficient (DSC) described in Section 6.6.2. The
average DSC for the predicted volumes of the validation set is calculated. To evaluate the
patch size for the 3D-patch-based approach, a U-Net with shared encoder for the input
modalities T1, T2, and PET is trained to achieve a T2-specific segmentation. The U-Net
settings can be found further down in this section. Table 6.4 shows that the segmentation
performance improves with larger patch sizes. A larger DSC indicates a better overlap
between the two segmentations. For the experiment, the input dimension for the 3D-
patch-based approach was set to dim_3d(column, rows, slices) = (256, 256, 32), as this
is the largest size that the used GPU can handle efficiently during training.

For the pseudo-3D approach the number of consecutive slices for the input dimension is
evaluated with the Sensor3D network. The Sensor3D network settings can be found further
down in this section. In the initial evaluation, the network consisted of a shared encoder for
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patch size
(columns, rows, slices) DSC

(128, 128, 32) 0.633
(208, 208, 16) 0.675
(208, 208, 32) 0.691
(208, 208, 16) 0.649
(208, 208, 32) 0.693
(256, 256, 16) 0.692
(256, 256, 32) 0.713

Table 6.4: Initial experiment to evaluate the input patch dimension for the 3D-patch-based
approach for FCN_ResNet, FCN_DenseNet, and 3D U-Net.

the input modalities T1, T2, and PET and was trained to perform a T2 segmentation. We
experimented with different numbers of consecutive slices and also with different distances
between the slices. The best performance was achieved with five consecutive slices, using
only every third slice of the patch volume. For the experiment, the patch dimension for
the pseudo-3D approach was set to dim_p3d(column, rows, slices) = (256, 256, 5).

Normalization layer: Studies such as that conducted by Dou et al. [DLHG20] have
shown that different intensity distributions of modality-specific data lead to problems
with the vanishing/exploding gradient effect. To support the regularization of the model
and overcome this problem, a well-established method is the usage of normalization
layers. Batch normalization [IS15] is the most popular one, where normalization is
computed for all samples in the mini-batch. Since the intensity distributions of PET,
MRI, and CT are different, it can be inferred that modality-specific normalizations have
a positive impact. For evaluating the normalization types, we followed the approach of
Dou et al. [DLHG20]. They used a network with a shared encoder for different modalities
and stated that instance normalization layers work best. The instance normalization
normalizes each channel individually for each training sample in the batch [UVL16].
This prevents data from different modalities from being normalized together. For the
evaluation of normalization types, we used the U-Net architecture and the Sensor3D
architecture. Both network architectures use a shared encoder for T1, T2, and PET
as input and a shared decoder for T2 and PET as output. Both network architectures
were extended: a normalization layer was inserted between each convolution layer and
activation layer. We used a batch size of one for the U-Net because the 3D-patch-based
approach requires extensive resources. For Sensor3D, a batch size of three was feasible.
To assess the performance of the normalization layer, the mean DSC is calculated for
each predicted segmentation volume of all patients in the validation set.

From the DSC scores in Table 6.5, it is apparent that batch normalization impedes learning
drastically. For the U-Net (3D-patch-based approach), the instance normalization also
shows a significantly worse result compared to a network without normalization. This
indicates that normalization layers are only useful for larger batch sizes. Due to memory
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DSC No normalization Batch normalization Instance normalization
U-Net

T2 DSC 0.639 0.089 0.446
PET DSC 0.439 0.172 0.364

Sensor3D
T2 DSC 0.543 0.492 0.627
PET DSC 0.474 0.540 0.607

Table 6.5: Initial experiment to investigate the potential of normalization layers.

limitations, we had to restrict the training batch size to one, which is apparently too
small for internal normalization to function properly. Hence for the following experiment,
it was decided to remove all normalization layers in the network architectures of U-Net,
FCN_DenseNet, and FCN_ResNet. The pseudo-3D approach of the Sensor3D network
requires less memory allowing for a larger batch size. Therefore we decided to investigate
the Sensor3D network with normalization layers to see if they support multimodal learning
for larger batch sizes.

U-Net: Architecural Design

The basic principles of U-Net [RFB15] have been described in Section 3.4.1. The network
consists of four blocks for each encoder and decoder path. The encoder block consists of
two convolutional layers, convl1 and convl2, with a kernel shape of 3× 3× 3, each followed
by a ReLU activation function. At the end of each encoder block, a max-pooling layer is
used as a downsampling operation, which halves the dimension of columns, rows, and
slices. The number of filters for the convolution layers are given in Table 6.6.

If there is more than one encoder path, the skip connections of all encoder blocks on
the same level are concatenated before they are passed to the decoder. Also, the
feature maps of the skip connections and the decoder block are merged by concatenation.
Figure 6.4 shows the U-Net architecture. The encoder and decoder blocks for the U-Net
are visualized in Figure 6.5.

Each block at level l has a different dimension for the feature map output. The feature
map dimension is defined as fm_dim = {number of filters, columns, rows, slices}. Columns,
rows, and slices are changed by the downsampling and upsampling layers. The set of
filters of the last layer of each block level l is defined as: F = {f1, ..., fl}. For U-Net, F
is specified as F = {32, 64, 128, 256}. The number of filters is the result of convolution
and fusion layers of each block.
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Figure 6.4: Network architecture for the 3D-patch-based approaches: U-Net,
FCN_DenseNet, and FCN_ResNet. In case of several encoder paths, the skip con-
nections are fused at the block level. The internal structure of the encoder and decoder
blocks depends on the network architecture.

block level l encoder/decoder
convl1,2

1 32
2 64
3 128
4 256

Table 6.6: U-Net: Number of filters for convolution layers per block level l
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Figure 6.5: U-Net: Network architecture of encoder blocks and decoder blocks.
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FCN_ResNet: Architecural Design

The FCN_ResNet architecture consists of several residual blocks, which are described in
Section 3.4.2. The implementation of the residual block is based on the 50-layer ResNet
of He et al. [HZRS16] The layers in the residual blocks are connected with so-called
shortcut connections. Each encoder block consists of three residual blocks, whereas each
residual block consists of three convolutional layers, namely convl1−3, with the following
kernels: 1× 1× 1, 3× 3× 3, and 1× 1× 1. The number of filters varies depending on the
block level, as shown in Table 6.7. In contrast to the 3× 3× 3 convolution, the 1× 1× 1
convolution is used to reduce the number of filter maps while preserving the learned
features. This is also called feature map pooling. Using the 1× 1× 1 filter, the network
performs a linear projection of a stack of feature maps. At the end of the encoder block,
the downsampling of the feature maps is performed. The encoder and decoder block is
shown in Figure 6.6.

Figure 6.6: FCN_ResNet: Network architecture of encoder blocks and decoder blocks.
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block level l encoder decoder
convl1 convl2 convl3 convl1 convl2 convl3

1 16 16 32 32 16 16
2 32 32 64 64 32 32
3 64 64 128 128 64 64
4 128 128 256 256 128 128

Table 6.7: FCN_ResNet: Number of filters for convolution layers per block level l

The decoder block has the same structure, but instead of the downsampling layer (max-
pooling layer), there is an upsampling layer. In contrast to the other networks, the
fusion of feature maps is performed with pixel-wise addition instead of concatenation,
because the shortcut connections of the residual blocks also use pixel-wise addition. Due
to this reason, the filter size of the fused skip connections of the encoder paths does
not increase. Concatenation layers are used for fusing the feature maps of the skip
connections and the feature maps of the decoder blocks. The overall network architecture
is the same as for the U-Net, which is presented in Figure 6.4. The filter sizes of the last
layer of each encoder block level are given by F = {32, 64, 128, 256}.

FCN_DenseNet: Architecural Design

The DenseNet consists of densely connected blocks, which allow the network to reuse
previously learned features. The DenseNet architecture is described in more detail in
Section 3.4.3. Different parameter values for the number of filters and the reduction factor
were evaluated and the best-performing ones were used. Each encoder block consists of
three convolution layers. Each of the layers learns 12 filters, which are then concatenated
to the previously learned feature maps to serve as input to the succeeding layer. After the
input layer, an initial convolution layer with 48 filters is applied to the input layer. To
deal with the large number of concatenated feature maps, a convolution layer is used to
reduce the number of filters by a factor of 0.6 at the end of the dense block. The decoder
block is built in the same way, but an upsampling layer replaces the pooling layer. The
illustration of the block architecture can be seen in Figure 6.7. The fusion of the feature
maps is performed with a concatenation layer. The overall network architecture is the
same as for the U-Net in Figure 6.4. The filter sizes of the last layer of each block are
given by F = {84, 69, 63, 61}.

68



6.3. Model Design

Figure 6.7: FCN_DenseNet: Network architecture of encoder blocks and decoder blocks.
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Sensor3D: Architecural Design

To explore the pseudo-3D approach, the Sensor3D network from Novikov et al. [NMW+19]
is investigated. Instead of using full 3D images for training, only a subset of the slices
from the image scan is taken. The strategy is to train and predict the volume slice-by-slice
but using additional adjacent slices as context. The output is the predicted central slice.

The architecture of Sensor3D is based on U-Net, but uses LSTM layers to incorporate
the 3D spatial context of the consecutive slices. The network architecture is the same as
in the paper by Novikov et al. [NMW+19], except that the number of consecutive slices
is increased, and instance normalization layers are inserted after each convolution layer.
Figure 6.8 shows the Sensor3D architecture and Figure 6.9 shows the blocks for encoder
and decoder.

One training sample consists of five consecutive slices with a slice distance of three: Two
left and two right neighbor slices were added to the central slice using only every third
slice. The patch generation for the pseudo-3D approach is described in more detail in
Section 6.4.1.

The number of filters varies depending on the block level, as shown in Table 6.8.

encoder/decoder
block level l convl1,2
1 32
2 64
3 128
4 256

Table 6.8: Sensor3D: Number of filters for convolution layers per block level l

One block of the encoder consists of a repeated set of a time distributed 2D convolution
layer, an instance normalization layer, and an ELU [CUH16] activation layer. At the end
of each block, a time distributed max-pooling layer halves the x- and y-dimension of each
sample. At the end of the encoder part, a bidirectional C-LSTM layer incorporates a
convolution layer with filter size 512. The decoder blocks are built in the same structure
as the encoder blocks, but only the downsampling layer is replaced by a time distributed
upsampling layer. The encoder skip connections are fused with a concatenation
operation.
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Figure 6.8: Network architecture for the pseudo-3D approach. Consecutive slices serve
as context to predict the mask for the central slice. In case of several encoder paths, the
skip connections are fused at block level.
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Figure 6.9: Sensor3D: Network architecture of encoder blocks and decoder blocks.
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6.4 Model Training
The model is trained with the preprocessed training dataset, which is described in
Section 6.2. The training process of FCNs (and CNNs) requires a data generation step
to adapt the image data to the network architecture and the training process. This data
generation step is explained in the next Section 6.4.1 and includes data augmentation and
patch generation. Moreover, activation and loss functions are required for training. In the
context of co-segmentation, special aspects have to be considered, which are described in
Sections 6.4.2 and 6.4.3. These are followed by the last Section 6.4.4, which describes the
selected network training settings and hyperparameters of the conducted experiments.

6.4.1 Data Generation

In the data generation step, the preprocessed data is prepared for efficient network
training. Depending on the used network architecture, the data may have to be cropped
to a certain image region (patch generation). Another essential task of data generation
is to perform data augmentation on the training samples. Data augmentation aims to
transform the training sample to simulate a larger dataset with more variability in a way
that the class of the data sample does not change. The first step is data augmentation,
followed by patch generation.

Data Augmentation

Data augmentation is a method to generate a more extensive training set from an already
existing small dataset. For this purpose, the original image is transformed by applying
small changes such as rotation, random noise, scaling, or elastic transformations. While
training the model with a large number of different data samples, the model can learn
functions with high variations. Consequently, the model improves its generalization ability
and performs better on unseen data. However, the network cannot detect variations
of already learned features, such as different shapes, sizes, and rotations. As a result,
the lack of data limits the learning performance and so the rare variations in the small
dataset lead to overfitting of the model. Data augmentation is used to avoid overfitting
by generating more image variations from the already existing data [GBC16].

The following augmentation methods were applied to the input data:

1. Rotation: The rotation transformation is applied slice-by-slice, thus only the slices
of the 3D volume are rotated around the original slice orientation. The slices are
rotated up to 20 degrees clockwise or counterclockwise.

2. Flipping or mirroring: The scan is randomly flipped in all three directions. Flipping
imitates different positions of the patient in the scanner, such as prone or supine
positions.

3. Scaling: The images are resized by a random scaling factor of 0.85 to 1.15 to deal
with varying sizes of patient bodies and tumors.
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To save disc space, data augmentation is implemented "on the fly", whereby the original
data sample is randomly augmented for each training iteration and the augmentation is
discarded after the iteration. During augmentation, all three transformations are applied
to the image with arbitrary values within the predefined range. In the case of multimodal
data, it is also important that the applied transformations are the same for each image
and each mask.

Patch Generation

In the patch generation process, the input images Iij from patient Pi are cropped to the
size of the input dimension of the network architecture. Two data-related challenges
are accompanying the decision on the input dimension size: memory constraints and
class imbalance. The literature shows different possibilities, which include 2D or 3D
image patches, but also entire images or patch-based approaches. Depending on the
context, each method has advantages and disadvantages. Feeding the entire original
image into the network has the advantage that the network has more context to perform
the segmentation task. On the other hand, this is often not feasible because of memory
constraints. Even powerful GPUs have a problem when training networks with the
original size of 3D medical image data.

In deep learning, a common issue with segmentation methods is class imbalance: as
the tumor is only a small part of the image, the majority of the pixels belong to the
non-tumor class. The underrepresentation of the tumor class makes the learning process
for the network difficult. Hence, the data should be prepared in such a way that the
network receives more of the tumor pixels to compensate for the class imbalance. The
patch-based approach can be useful in this respect, whereby mainly patches with tumor
pixels are used, and patches with only having background pixels are avoided.

In this thesis, we evaluate the 3D-patch-based approach as well as the pseudo-3D-patch-
based approach, which are described in Section 3.4.4.

3D-patch-based approach: Depending on the image data Iij of patient Pi, only five
to twenty percent of the total image consists of tumor voxels. For optimal training,
patches should be balanced between tumor and non-tumor voxels. From each image
in the image set Iij one patch pij and from each mask in the mask set M i

l one patch
p̄ij is extracted: pij = p(Iij), p̄ij = p(M i

l ). The patches pij and p̄ij are extracted at the
same position for each image and mask. In each training epoch, the generator extracts a
new random patch from the training sample. By continuously regenerating the patch
randomly, the network learns a larger area of the image as it would learn with a fixed
patch. This increases the relative number of tumor voxels, but gives the network a more
extensive image context for learning. In our approach, each patch shows tumor tissue.
Hence, no patch shows only non-tumor pixels. Figure 6.10 illustrates the random patch
generation for the training process. If the training sample is smaller than the defined
patch size, the sample is randomly placed in the patch, and non-image regions are filled
with the lowest value of the image.
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6.4. Model Training

Pseudo-3D-patch-based approach: The patch extraction method for the pseudo-
3D-patch-based approach works similarly as in the 3D-patch-based approach. However,
from the extracted patch p only a set of slices is selected. The pseudo-3D-patch consists
of a central slice and a ∈ N left and right consecutive neighbor slices, where only every
dth, d ∈ N slice is selected. If the index of adjacent slices is outside the set range, the
index is set to the minimum or maximum slice index, respectively.

Figure 6.10: (A) For network training, the patch generator creates a random patch
of the image volume, but ensures that the tumor is on the patch. (B) To predict the
segmentation of unseen samples, the image volume is divided into several patches
using an overlapping sliding window method.

6.4.2 Activation Functions for Overlapping Labels

The non-linear activation functions make the model powerful as it learns a complex
mapping from the input to output space. Activation functions are usually applied right
after each convolution layer. Also, the last layer of the network uses an activation function,
where the pixels are finally classified. However, some of the common activation functions
are not feasible for multiple modality-specific segmentations. This is due to the fact that
overlapping labels do not represent an exclusive or. It might be the case that both labels
can be true or false at the same voxel position. Therefore, activation functions, which
assume that the labels for the same voxel are in opposition to each other are not suitable.
For example, softmax is a common activation function. However, it is not suited as it
requires that the labels for each voxel complement each other to exactly one, so both
labels cannot be one or zero, respectively.

In this thesis we used the ReLU activation function after each convolution layer and
the sigmoid activation function for the last activation layer, because it does not involve
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any label dependencies. The range of values of the sigmoid function is 0 to 1, which
corresponds to the value of the class labels. The sigmoid function is given by:

sigmoid(x) = 1
1 + e−x

(6.2)

6.4.3 Loss Functions for Overlapping Labels

In the field of deep learning, the cost function is called loss function. After each epoch, the
loss function evaluates the difference between the predicted and correct result. Activation
function and loss function are closely related. Thus the same limitation regarding multi-
class classification applies here as well. Since the multi-class classification assumes that
each sample belongs to exactly one class, it is not appropriate for overlapping labels. For
example, categorical cross-entropy is a loss function based on this assumption. Therefore,
it is not suitable for solving overlapping co-segmentation tasks.

In our network training, we used the dice loss, which is a well-known loss function
for segmentation tasks, and does not consider dependencies between labels. The dice
similarity coefficient is given in Equation 6.4, however to use it as a loss function an
adaption is necessary. The dice loss between the ground truth volume G and the predicted
volume P is defined as [MNA16]:

dice_loss(P,G) = 2
∑N
i pigi + ε∑N

i pi +
∑N
i gi + ε

(6.3)

whereby gi ∈ G and pi ∈ P denote the voxels of the volume. The constant ε is added to
the nominator and denominator to avoid a division by zero, in case G and P are empty
[SLV+17].

6.4.4 Network Training Settings

In the conducted experiment, each model is trained with the same training settings to
allow a fair comparison of the different network architectures. The optimization algorithm
for weight adaption is Adam [KB15], with an initial learning rate of 4e−5. The learning
rate decreases by a factor of 0.5 if the training loss has not improved over 10 epochs.
The loss function was dice loss as described in Section 6.4.3. Early stopping is used
to terminate the network training if the training loss is not improving over the last 30
epochs. The best model with the lowest validation loss of all epochs was saved.

For the 3D-patch-based approach the parameter for the patch dimension is set to
dim_3d(column, rows, slices) = (256, 256, 32). For each epoch, the patch is sampled
pseudo-randomly from the total volume of the image data of the patient, ensuring that
at least parts of the tumor are visible in each patch. The number of samples per epoch is
equivalent to the number of patients in the training dataset because, at each epoch, one
training sample is generated from each patient image.
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The pseudo-3D-patch-based approach is used for the Sensor3D network, where five
consecutive slices with a size of 256× 256 are generated for the input layer. This results
in a patch dimension of dim_p3d(column, rows, slices) = (256, 256, 5). For each epoch,
10 samples from each patient are randomly selected, where only eight samples contain
tumor tissue.

6.5 Tumor Segmentation

Tumor segmentation is the second task of the segmentation pipeline. The trained segmen-
tation model is applied to the unseen data sample to predict the tumor segmentation.

The steps to predict tumor segmentations on unseen data are:

1. Data preprocessing: First, the data is preprocessed using the same methods and
settings as in the model training task, following the steps in Section 6.2.

2. Patch generation: To predict the sample in its original size, the data sample is
divided into several patches as described in Section 6.4.1. However, the method
used to extract the patches is not random sampling, but the patches are extracted
using a sliding window method with overlap. The overlap width is at least 40 pixels.
Instead of creating one patch per sample, the entire image volume is divided into
patches. Figure 6.10 shows a visualization of the sliding window method compared
to the random sampling method. The index coordinates of each sample are stored
for later reconstruction of the predicted samples.

3. Application of the trained segmentation model on all patches: The trained
model subsequently predicts segmentation masks for each of the patches.

4. Reconstruction of the predicted patches: The predicted patches are then
reassembled to match the original position within the sample. Overlapping patch
areas are reconstructed: Each voxel of the reconstructed sample receives the
maximum value of all overlapping patches at that voxel position.

6.6 Evaluation Setup

To evaluate the performance of the trained models, k-fold cross-validation is used. We
used the evaluation metrics dice similarity coefficient and surface overlap coefficient with
tolerance to calculate the evaluation scores for the predicted segmentation masks of the
validation set.

6.6.1 Cross-Validation

How well the model generalizes can be estimated by measuring the predicted result
concerning data that was not used for model training. Therefore the dataset is divided
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into a training set and a validation set. For small datasets, a robust evaluation approach
is required to reduce the bias of the training and validation set. k-fold cross-validation
is a popular validation approach for limited samples [Koh95]. In this approach, the
data samples are randomly divided into k folds and then grouped into training and
validation sets. The network is then trained k times, each time with a different fold used
as a validation set. This ensures a more robust evaluation of the model. In our case,
k is set to three. Small and also heterogeneous datasets require special consideration
when dividing them into training and validation sets. The soft tissue sarcoma dataset is
very heterogeneous. It contains different tumor types, different anatomical regions, and
also different image orientations. To ensure that the different characteristics are evenly
distributed across the folds, stratified cross-validation can be used. In stratified k-fold
cross-validation, the folds preserve the percentage of samples for each class characteristic
[Koh95].

For the stratified cross-validation, the samples were divided into five classes: (1) tumor in
the arm or knee, (2) tumor in the thigh, (3) tumor in the pelvis, (4) tumor in the pelvis
or thigh with a bladder on the scan, and (5) coronal image orientation. Figure 6.11 shows
the assignment of each sample to the training or validation set for all three iterations.

All models were trained and tested with the preprocessed dataset of soft tissue sarcomas of
47 patients. Four of 51 patients were removed from the dataset because the intra-patient
registration was not successful.

6.6.2 Evaluation Metrics

In medical segmentation, the predicted segmentation mask by a model is usually compared
to the manual segmentation by a medical expert. For the tumor segmentation task,
reasonable metrics are needed to assess how closely the segmented regions are aligned
regarding the overall alignment and the contour correspondence. Existing evaluation
metrics for 3D image segmentation, in general, can be grouped into different categories,
such as overlap-based, volume-based, or spatial-distance-based. These metrics can be
sensitive to certain types of image segmentation errors, for example, the number of wrongly
segmented voxels, the number of wrongly segmented areas, holes inside segmented regions,
or contour mismatches. The robustness of segmentation algorithms can be validated
by evaluating multiple metrics from different categories [TH15]. In this thesis, the dice
similarity coefficient and the surface overlap coefficient with tolerance τ = 1.5 mm were
chosen to evaluate the performance of the trained models.

Dice Similarity Coefficient (DSC)

The dice similarity coefficient belongs to the overlap-based metrics and is the most
commonly used evaluation metric in medical image segmentation [TH15]. It measures
the voxel-wise overlap of the region segmented by the model with the ground truth. The
DSC ranges from zero to one, where zero represents no alignment and one represents
perfect alignment. The DSC is given by [Dic45]:
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Figure 6.11: The stratified 3-fold cross-validation assigns each sample to the training or
validation set and ensures that the classes are evenly distributed across the sets.

DSC = 2 · TP
2 · TP + FP + FN

= 2· | X ∩ Y |
| X | + | Y | (6.4)

whereby TP denotes the number of true positives, FP are false positives, and FN are
false negative voxels. DSC is not outlier-sensitive. In the context of tumor segmentation,
this is beneficial, because it is irrelevant whether an additional wrongly segmented region
is close or far from the reference segmentation.

Surface Overlap Coefficient with Specified Tolerance (SOCT)

The quality of manual segmentation depends on the experience of the healthcare profes-
sional. Besides, the tumor contour is sometimes difficult to detect in the scan. Therefore,
segmentation is prone to errors and is subject to a high degree of variability. This makes
it difficult to reproduce the manual segmentation accurately. A possibility to neglect the
exact drawn contour, but still measure the actual shape and volume alignment, is the
surface overlap coefficient with specified tolerance. The SOCT is a mixture of overlap-
based and distance-based metrics. It takes only the spatial overlap of the segmentation
surface into account, instead of the exact voxel-wise overlap. SOCT acts as a specific
type of recall score, which represents the fraction of the total number of labeled ground
truth voxels that were actually correctly predicted.
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A surface voxel is defined as a segmented voxel that has at least one neighbor that is not
part of the segmentation. This applies to both the predicted segmentation and the ground
truth segmentation. Then the closest distances of all surface voxels from the ground-truth
segmentation to the predicted segmentation are measured. A surface voxel is considered
as overlapping if the closest distance to the predicted segmentation surface is smaller
than the specified tolerance. Nikolov et al. [NBM+18] define the surface border region
B

(τ)
i at tolerance τ for the surface Si of the segmentation mask in a three-dimensional

space as:
B

(τ)
i = {x ∈ R3 | ∃σ ∈ Si, ‖x− ξ(σ)‖ ≤ τ} (6.5)

where x denotes a point in R3, σ ∈ Si is a point on the surface, and the function ξ maps
the surface point σ to R3.

Then the surface overlap coefficient at tolerance τ is given by:

SOCT τi,j =
| Si ∩B(τ)

j |
| Si |

(6.6)

which measures the surface overlap from the ground truth surface Si to the predicted
surface at tolerance B(τ)

j . The result is the overlap fraction with respect to the ground
truth surface Si, whereby SOCT τi,j ∈ [0, 1].

6.7 Implementation Environment
The main parts of the pipeline were implemented with Python, as there are a lot of
advanced and high-performance frameworks for deep learning and image processing
available. We used the frameworks Keras 2.2.4 [Cho15] and Tensorflow 1.13 [AAB+15]
for implementing the neural network part. The framework Tensorflow supports CPU and
GPU implementation in parallel and is therefore well-suited for deep learning with image
data. Keras enables the rapid prototyping of different frameworks for deep learning.
Keras was used as a wrapper of Tensorflow for fast and user-friendly development. The
network training was carried out on a server from VRVis, which is equipped with an
NVIDIA Titan RTX GPU with 24 GB and CUDA version 10.1.

For the data preprocessing part the packages nibabel [BMH+20], dicom2nifti [LMA+16],
and SimpleITK [BLY18] were used for dealing with images in a medical data format.
Also, the data augmentation in the network training procedure was implemented with
the package SimpleITK [BLY18]. For the implementation of the evaluation metric SOCT
the package surface-distance [Dee] was used. The registration of PET/CT to MRI was
implemented with Elastix [KSM+10].
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CHAPTER 7
Results and Discussion

This chapter presents the findings of the conducted experiments, which will be analyzed
and assessed to answer the initial research questions from Section 1.3. We focus on
the four key themes: (1) single vs. multimodal networks in Section 7.1, (2) analysis
of the segmentation result on a patient level in Section 7.2, (3) fusion strategies and
co-segmentation in Section 7.3, and (4) network architectures in Section 7.4. The last
Section 7.5 deals with the limitations and challenges of the experiment.

For the experiment, each selected encoder-decoder combination from Section 6.3.1 is
trained for all four network architectures: FCN_DenseNet, FCN_ResNet, U-Net, and
Sensor3D. The selected encoder-decoder combinations serve as baseline models, which
were trained using either the 3D-patch-based or the pseudo-3D approach. Due to the
3-fold cross-validation, each model (encoder-decoder-network combination) was trained
three times, so each patient in the dataset was once in the validation set. For each
segmentation, the dice similarity score, as well as the surface overlap coefficient with
a tolerance of τ = 1.5 mm, was calculated using the predicted segmentation of the
reconstructed patient volume.

First, we evaluated the performance of each model with respect to network architecture,
fusion design, and multimodal input. Table 7.1 and Table 7.2 show the mean DSC
and mean SOCT for each model structured by encoder-decoder combination and by
network architecture. The term encoder-decoder combination is used to describe the
fusion strategy of the network. In the Table 7.1 and Table 7.2, each fusion strategy has
an abbreviation. E and D refer to the encoder and decoder, respectively. The number of
bracket pairs indicates the number of paths. The modalities within the brackets show
which modalities are fused in the path. For example, E(T1,T2)(PET)-D(T2,PET) means
that the encoder has two paths, and the decoder has one path. The first encoder path
fuses T1 and T2 at the input-level, the second encoder path is modality-specific to PET.
The decoder has one shared path to predict the T2 and PET segmentation.
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The most powerful models are highlighted in Table 7.1 and Table 7.2 . The selection of
the best models is primarily based on the DSC score.

Best single-input model: The best performing single-input model for T2 segmentation
is DenseNet-E(T2)-D(T2) and for PET segmentation it is Sensor3D-E(PET)-D(PET).

Best multi-input model: In the case of multi-input models for T2 segmentation, the
two DenseNet models DenseNet-E(T1,T2)(PET)-D(T2) and DenseNet-E(T1,T2)(PET)-
D(T2, PET) with DSC scores of 0.720±0.21 and 0.721±0.22, respectively, have very
similar DSC scores. However, the model DenseNet-E(T1,T2)(PET)-D(T2) was selected
because it has a higher SOCT score of 0.780±0.18. The best multi-input model for PET
segmentation is Sensor3D-E(T1,T2,PET)-D(PET).

Best multi-output models: The two best multi-output models are Sensor3D-E(T1,T2,PET)-
D(T2,PET) and Sensor3D-E(T1,T2)(PET)-D(T2,PET), which each have a DSC score
above 0.66 for both T2 and PET segmentations.

In the following sections, the presented findings are based on the results in Table 7.1 and
Table 7.2 .
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Table 7.1: Mean DSC scores for T2 and PET segmentation structured by network architecture and fusion strategy. The
best performing models for the T2 and PET segmentations are highlighted: single-input model for T2/PET segmentation,
multi-input model for T2/PET segmentation, multi-output model for both T2 and PET segmentation.
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Table 7.2: Mean SOCT (τ = 1.5 mm) scores for T2 and PET segmentation structured by network architecture and fusion
strategy. The best performing models for the T2 and PET segmentations are highlighted: single-input model for T2/PET
segmentation, multi-input model for T2/PET segmentation, multi-output model for both T2 and PET segmentation.
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7.1 Results on Single Modal and Multimodal Networks

Figure 7.1 shows the impact of single-input and multi-input networks on the segmentation
result. From the data in Table 7.1, it is apparent that FCN_DenseNet works best for
T2 segmentation, and Sensor3D works best for PET segmentation in the conducted
experiment. Therefore only models with these two architectures will be selected in the
following. To create the boxplot in Figure 7.1, the scores from Table 7.1 were compared
and the best performing models from each encoder-modality combination were used.

Based on the observed results, we answer the questions "Q1. Would the use of multimodal
images improve the segmentation result of a modality-specific segmentation? Which
modality combinations have a major impact on the segmentation result?". It is clearly
visible that single modalities as network input resulted in the lowest performance scores.
For predicting the segmentation on T2, the result increases if one or more modalities are
added. However, it does not seem to make a significant difference which modalities are
added. Although, a minor performance increase can be seen if PET is added instead of
T1. A possible explanation for this might be that PET shows metabolic data and thus
provides more complementary information than T1. The same applies to the results of
the PET segmentation: results improve if more input modalities are used in the encoder.
In Figure 7.1 we can see that the combination of PET, T1, and T2 improves the DSC
scores more significantly than the combination of PET and CT. It is also interesting
that the DSC scores decrease when using all sequences. A possible explanation for these
results could be that the additional use of CT requires more computing effort in the
training process, which leads to inefficient feature learning. Closer inspection of the
boxplot shows that the SOCT increases if more modalities are used. This means that not
only the volumetric alignment of the segmentations improves, but also the segmentation
contours improve.

In order to analyze the segmentation results on a patient level, single-input networks
were compared to multi-input networks. For the T2 segmentation, the best multi-input
and single-input models were FCN_DenseNet - E(T1,T2)(PET)-D(T2) and E(T2)-
D(T2). For the PET segmentation, the Sensor3D models E(T1)(T2)(PET)-D(PET)
and E(PET)-D(PET) were selected. The results for DSC and SOCT per patient are
compared in Figure 7.2, which shows the validation scores for the first fold of the 3-fold
cross-validation.

The figure reveals a clear trend, showing that in most cases, the scores for multimodal
segmentation are higher or at least similar to those for single modal segmentation. On
average, the multimodal input clearly leads to considerably better segmentation results
on both modalities T2 and PET. However, in PET segmentation, the multimodal network
performs better in almost all cases. In the T2 segmentation, only a few samples show
higher scores when predicted with the single modal segmentation model. Comparing the
DSC with the SOCT metric, SOCT scores are significantly higher on average. This may
be due to two factors. Firstly, the SOCT has a tolerance limit of 1.5 mm for measuring
the surface contour, which significantly improves the SOCT score for predicted surface
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Figure 7.1: Boxplots showing the impact of single and multimodal data on the segmenta-
tion result. The solid lines indicate the median and the dashed lines the average scores
from all patients. For each specific input modality combination, the model with the
highest DSC score from Table 7.1 was selected.

86



7.1. Results on Single Modal and Multimodal Networks

Figure 7.2: Comparison of single modality (T2 or PET) networks and multimodality
(T1, T2, and PET) networks, using DSC and SOCT scores per patient. The presented
patients are from the first fold of the 3-fold cross-validation.
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contours that do not have a perfect overlap but do have an overlap within the tolerance
limit. Secondly, the predicted segmentation masks also include non-tumor regions, e.g.,
the bladder. Those labeled non-tumor regions, which represent separate segmented
components, are referred to as outliers. Outliers are not considered by the SOCT, only
voxels on the surface contour that match the ground truth surface contour are considered.
The most problematic region is the bladder, which is often labeled as false positive by
the segmentation model. The bladder appears very similar to soft tissue tumors in the
medical scans, and thus the network has issues to distinguish between those two tissues.
The T2 protocol is fluid-sensitive, hence the bladder gives a hyperintense signal. Since
the PET tracer becomes decomposed by the body, it is concentrated in the bladder.
Therefore, very high values are also measured in the PET scan, although the metabolism
is not increased in this area [LKB+17a]. The high values of the T2 and PET scan lead,
therefore, to the wrong segmentation of the bladder.

The further course of the evaluation deals mainly with the results of FCN_DenseNet
and Sensor3D, as they showed the best performances. The results in this section indicate
that encoder and decoder fusion architectures have an impact on the segmentation result.
Section 7.3, then focuses on the impact of shared and modality-specific encoders and
decoders.

7.2 Analysis of the Segmentation Result on a Patient
Level

To demonstrate the challenges and the influence of the variable dataset on the segmen-
tation outcome, the results for three patients are examined in more detail below: P.32,
P.35, and P.38. Figure 7.3, 7.4 and 7.5 show visual segmentation results. Each figure is
organized as follows: At the top, there are overview slices from each modality volume (T2,
T1, PET, and CT). Subsequently, the segmentation results are presented on enlarged
scan sections, showing the contours of the T2 segmentation mask on the T2 scan and the
PET segmentation mask on the PET scan. The individual annotations show the ground
truth, the predicted segmentation mask from the multimodal network, and the predicted
segmentation mask from the single modal network. The selected models are the best
models, which are also highlighted in Table 7.1.

Patient P.32 has a malignant fibrous histiocytoma (MFH) in the right thigh, see
Figure 7.3. The main challenge, in this case, is that the tumor volume is very small in
relation to the total scan. Since the scan has a size of 500×375×29 voxels with a resolution
of 0.75×0.75×7.98 mm, the tumor volume is only about 0.15%. Although the alignment
of the predicted segmentation corresponds to the ground truth segmentation, the DSC for
both T2 and PET segmentation is low. The DSC for the T2/PET segmentation masks are
0.06/0.51 for single-input networks and 0.65/0.58 for multi-input networks. The reason
for the very low DSC of 0.06 is that the DSC does not take the object-to-total volume
ratio into account. The number of voxels belonging to the tumor is very small, so even a
few wrongly segmented voxels have a big influence on the DSC score, whereas the SOCT
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is more robust in such cases. For patient P.32, the SOCT delivers significantly better
values than the DSC. The SOCT for the T2/PET segmentation masks are 0.59/0.94
for single-input networks and 0.90/0.86 for multi-input networks. Due to the imprecise
manual segmentation, the tolerance limit of the SOCT is useful. An imprecise manual
segmentation leads to the problem that the feature learning process becomes more difficult
in network training.

Patient P.35 has a leiomyosarcoma in the right thigh. Figure 7.4 presents the segmenta-
tion result for this patient. In this case, the tumor does not show the typical hyperintense
signal in the T2 scan, although contrast enhancement was used. Opposed to other cases,
the tumor is easily visible in T1 and CT, but not in T2 and PET. Even though it is
difficult to detect the tumor, the tumor area was still identified by the network. The
evaluation metrics for patient P.35 are given in Table 7.2 and show very low DSC scores
due to the additional segmentation of the bladder. This case illustrates that the dice
score is not always the most appropriate choice to measure segmentation results. Due
to the additional segmentation of an outlier component, the score is close to zero, even
though the segmentation contour of the tumor was predicted well. The issue that the
bladder is improperly segmented by the segmentation model is already addressed in
the previous section. Depending on the model, the DSC is 0.17 (single-input) and 0.05
(multi-input) for the T2 segmentation, and 0.1 (single-input) and 0.31 (multi-input) for
the PET segmentation. For the PET segmentation, the multimodal network detects fewer
outliers and therefore achieves a higher DSC. Since the SOCT does not take outliers and
separated additional segmented areas into account, high scores of 0.84 for single-modal
T2 segmentation and 0.78 for multimodal PET segmentation were obtained. This case
shows that the model detects the surface contour of the tumor very well.

Patient P.38: The evaluation scores for patient P.38 with an MFH sarcoma are among
the top-performing scores of the dataset. In Table 7.2, both DSC and SOCT values for
PET and T2 segmentation show results between 0.7 and 1.0. The segmentation results
are depicted in Figure 7.5. The high signal values in the T2 scan, as well as in the PET
scan, could be the decisive factors that make it easy for the model to recognize the tumor.
In this patient, the modality-specific tumor segmentations differ greatly in their shapes,
as there is necrosis in the middle of the tumor. Necrosis is very common in soft tissue
tumors of large sizes. In the T2 segmentation, the necrosis is considered as a part of the
tumor, but since the necrosis has no metabolic activity, it is not considered in the PET
segmentation. Necrosis is visible in the center of the tumor, which is correctly delineated
in the PET segmentation. The information on the single T2 modality seems to be clear
enough to achieve an excellent segmentation result with a DSC of 0.84 and a SOCT of
0.9 (single-input model). The additional PET and T1 scan improves the result of the
multi-input model and achieves a DSC of 0.95 and a SOCT of 0.98.
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Figure 7.3: Patient P.32: T2 and PET segmentation results for single modal and
multimodal networks with respect to the ground truth . (A-B) Enlarged T2 and PET
slices show the tumor and the T2/PET segmentation results. (C-D) Adjacent slice of
(A-B).
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Figure 7.4: Patient P.35: T2 and PET segmentation results for single modal and
multimodal networks with respect to the ground truth . (A-B) The enlarged T2 and
PET slices show the tumor with the T2/PET segmentation results. (C-D) T2 and PET
slice with the incorrect labeling of the bladder.
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Figure 7.5: Patient P.38: T2 and PET segmentation results for single modal and
multimodal networks with respect to the ground truth . (A-B) The enlarged T2 and
PET slices show the tumor and the T2/PET segmentation results.

7.3 Results on Fusion Strategies and Co-Segmentation

We evaluated the effect of different fusion strategies based on the network architecture,
considering shared and modality-specific fusion methods for encoder and decoder. The
data of Table 7.1 is restructured and grouped by encoder and decoder design to give a
more comprehensive overview. Table 7.3 and 7.4 show the results for FCN_DenseNet
and Sensor3D.

To answer question "Q2. Is it possible to combine the modality-specific models into one
model in order to segment several modality-specific tumors and still achieve efficient
performance results?", we interpret the results presented in Table 7.3 and Table 7.4. A
key finding has already been mentioned in the previous section, namely, the different
performance results for T2 and PET segmentation when both are segmented simultane-
ously (co-segmentation). For FCN_DenseNet, the scores for the T2 segmentation are not
affected by the co-segmentation. However, PET segmentation decreases considerably. In
comparison, PET segmentation performs significantly better when using a single-output
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decoder. This indicates that FCN_DenseNet with the settings we used is not suitable for
co-segmentation. The Sensor3D fusion strategies show some differences compared to those
of FCN_DenseNet. Regarding co-segmentation, specific Sensor3D models are able to
achieve good performance for both T2 and PET segmentation, which are E(T1,T2,PET)-
D(T2,PET) and E(T1,T2)(PET)-D(T2)(PET). These models are also highlighted in
Table 7.1. This is in contrast to FCN_DenseNet, which always performs better for the
T2 segmentation but at the expense of the PET segmentation. It can also be observed
that co-segmentation only works under the following conditions: Either shared encoder
and decoder are used, or alternatively, modality-specific encoder and modality-specific
decoder are used, where each decoder path must have a corresponding encoder path. A
possible explanation for this could be that if there is an unequal number of encoders and
decoders, the model has difficulty mapping the correct encoder path to the corresponding
decoder path in the network training.

Based on the same results, we attempt to answer the question "Q3. How does the
multimodal fusion design of the network influence the segmentation result?". Focusing
on the encoder design for the Sensor3D architecture, we can see that the separation of
the modalities into modality-specific encoders shows the most considerable performance
improvements. Using PET and CT in one encoder path worsens the result considerably.
These findings and the fact that Sensor3D uses normalization layers underline the
assumption that the different intensity distributions of the modalities have a negative
influence on multimodal learning if related encoder and decoder paths have different
intensity distributions.

For the FCN_DenseNet architecture, the two best DSC scores for T2 segmentation
were achieved with two separate encoder paths, one for T1 and T2 and another one for
PET. Encoders with a shared path for T1, T2, and PET show a slight deterioration.
However, splitting the modalities into three paths does not bring any improvement. Even
the use of an additional CT does not lead to a noticeable change in performance for
single-output decoders or shared decoders. However, the performance of the model with
the separate decoder will deteriorate. There are several possible explanations for this
result. These differences can partly be explained by inefficient network training since the
additional CT requires more computing effort. Another reason could be that the shared
encoder negatively influences the network training due to the different modality-specific
data distributions of PET and CT. The fact that the DSC score decreases when PET
and CT share the same encoder path can also be observed with the Sensor3D models
E(PET,CT)-D(PET) and E(PET)(CT)-D(PET). Looking at the PET segmentation in
detail, the best segmentation is clearly achieved with single-output decoders. This could
be attributed to the fact that single-task learning is easier for the network than multi-task
learning. Moreover, the best encoders use T1, T2, and PET as input modalities, but
there is no noticeable performance difference between these encoders.

To get a better understanding of the learned multimodal features, the feature maps of
shared and modality-specific encoders and decoders were examined. Figure 7.6 shows a
sample of learned features of FCN_DenseNet and Sensor3D using a shared and modality-
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Table 7.3: Mean DSC scores of FCN_DenseNet structured by encoder and decoder
fusion design. Data restructured from Table 7.1.

Table 7.4: Mean DSC scores of Sensor3D structured by encoder and decoder fusion
design. Data restructured from Table 7.1.
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specific network in both cases. For the visualization, a slice from a randomly selected
feature map volume was used. An interesting finding is that in shared encoders, the
characteristic features of the individual modalities become visible in the same feature map.
Nevertheless, the subsequent decoder has the capacity to separate the corresponding
features in order to predict T2 and PET masks. However, it can be seen that the shared
encoder-decoder model E(T1,T2,PET)-D(T2,PET) with the FCN_DenseNet architecture
cannot very well distinguish between T2 and PET segmentation. The architecture of
the modality-specific decoder is designed so that each decoder path is connected to all
encoder paths by skip connections. This causes the feature maps of the decoder blocks
to include characteristic attributes of the other modality-specific encoders. For example,
in the modality-specific decoder path for PET segmentation, the anatomical structure of
the MRI becomes visible. It seems possible that the network only adopts features of the
other modalities that have a positive impact on the segmentation result.

Together, these results provide important insights into how fusion design affects the
segmentation result. It is evident that co-segmentation with FCN_DenseNet is not
feasible in the current experimental setup, but Sensor3D is suitable for this purpose. The
findings of the experiments support the idea that modality-specific data distributions
can negatively influence each other if using shared encoder or decoder paths. The
normalization layers in Sensor3D allow an efficient co-segmentation, considering the
conditions mentioned above.

7.4 Results on Network Architecture
We evaluated the impact of different network architectures on different fusion strategies
for multimodal segmentation. Table 7.1 and Table 7.2 report the DSC and SOCT scores
achieved by FCN_DenseNet, FCN_ResNet, U-Net, and Sensor3D.

Results on single-input models: To show how the fusion approach is influencing
the multimodal learning, we first investigated single-input and single-output models. It
can be observed that network architectures with a single T2 input and output, denoted
as E(T2)-D(T2), perform slightly better with FCN_DenseNet, whereas FCN_ResNet
performs worst. For models with single PET input and output, denoted as E(PET)-
D(PET), the performance of FCN_DenseNet and Sensor3D is better than FCN_ResNet
and U-Net.

Results on multi-input models: Generally, all network architectures show a per-
formance increase if using more than one modality as input. Although FCN_ResNet
scores poorly on single-input segmentation, it performs very well if T1, T2, and PET are
used in separate modality-specific encoder paths. T2 segmentations for FCN_ResNet
improve the DSC score from 0.505±0.22 to 0.672±0.21, and PET segmentations from
0.540±0.27 to 0.661±0.19. Depending on the network architecture, there are certain
exceptions, where some fusion strategies strongly deteriorate performance. For example,
U-Net and Sensor3D show a decreased performance for the T2 segmentation, if using a
shared encoder for PET and CT input. This finding indicates that the chosen modalities
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Figure 7.6: Visualization of learned multimodal features for two selected fusion methods
of FCN_DenseNet and Sensor3D. Shared and modality-specific encoders or decoders
affect the learned features. One slice of a randomly selected 3D feature map is presented
per block.
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and the fusion strategy in the encoder can have a major impact on the segmentation
result. The architecture of the encoder and decoder blocks of U-Net and Sensor3D is
simpler than that of the DenseNet and ResNet blocks. This aspect could be the reason
for the lower DSC scores of the U-Net and Sensor3D models with a shared encoder for
PET and CT. The complementary PET and CT features might be difficult to learn for
networks with simple architectures.

Results on co-segmentation: Overall, FCN_DenseNet shows the best DSC for T2
segmentation and outperforms the other network architectures in almost all fusion
strategies. For the PET segmentation, there is little difference in the performance of
FCN_DenseNet, FCN_ResNet, and U-Net. It is striking that the PET performance values
are better for single-input models than for co-segmentation models. The T2 segmentation
performance is not significantly affected by the decoder design. These results indicate
that FCN_DenseNet, FCN_ResNet, and U-Net are not feasible for co-segmentation in
the current experimental setting. In contrast, the Sensor3D network architecture shows
that co-segmentation is possible for specific fusion strategies, demonstrating that it is
able to operate without losing the performance for the T2 and PET segmentation. As
Sensor3D is the only model with normalization layers, this seems to be an important
factor to achieve good performance for multi-output models. For the T2 segmentation,
the Sensor3D shows that the scores for multi-output models are notably better than for
single-output models. This is in contrast to the other network architectures, where the
decoder architectures have no significant influence on the T2 segmentation.

With these findings, we attempt to answer the question "Q4. Is multimodal learn-
ing better suited for certain network architectures, or is the proposed fusion strategy
network-independent?" The results showed that the same fusion strategy led to different
performance results among the four network architectures. Therefore, we can assume that
the fusion strategy is not network-independent. However, we showed that all four network
architectures support multimodal learning. The right choice of fusion strategies is crucial
and can definitely outperform single-modality models. On average, FCN_DenseNet
scores much better for T2 segmentation, and Sensor3D scores significantly better for
PET segmentation. FCN_DenseNet shows that it can handle fusion strategies that
do not work for other networks. This may be due to the feature reuse architecture of
FCN_DenseNet, which provides better stability against interfering modalities or fusion
strategies. At this point, however, it must be stressed that network architectures with
other hyperparameter settings have the potential to deliver better results. For example,
the normalization layers that are typically part of FCN_ResNet would probably improve
segmentation, if a larger batch size could be used for network training.

Comparison to the state-of-the-art: We only identified the study by Zhong et al.
[ZKP+19], which deals with tumor co-segmentation in combination with FCN models.
They segment lung tumors in PET/CT scans, co-segmenting the modality-specific tumor
in the CT and the PET scan at the same time. They use two connected 3D U-Nets: one
U-Net for the CT segmentation and one U-Net for the PET segmentation. The U-Nets
are connected in the decoder part because each decoder branch receives the concatenated
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feature maps of both encoders. A direct comparison is not possible, because they trained
their network with a different dataset and other hyperparameters. Instead of a CT
scan we use a T2 scan. Moreover, our network settings are different because they are
dependent on the dataset and the GPU limit. In our conducted experiment, the closest
architecture to Zhong et al. is the U-Net with separated encoder and decoder: Unet
E(T2)(PET)-D(T2)(PET). As shown in Table 7.1, the Unet (T2)(PET)-D(T2)(PET)
yields a DSC score of 0.617 for the T2 and 0.454 for the PET segmentation. These DSC
scores are lower than the scores of the best performing Sensor3D co-segmentation model:
Sensor3D E(T1, T2)(PET)-D(T2)(PET) achieves 0.679 and 0.693 for the T2 and PET
segmentation, respectively.

7.5 Limitations of the Experiment
To conclude this chapter, the main challenges and limitations of the experiments are
discussed.

Missing normalization layers: Being limited to the capacity of the GPU, this study
lacks to evaluate the combination of normalization layers and the 3D-patch-based approach
for large batch sizes. The promising results of the pseudo-3D approach, which uses instance
normalization layers, indicate that normalization is an important factor in improving
the performance. Of particular interest would be the combination of the feature reuse
architecture of FCN_DenseNet with additional normalization layers.

Incorrect labeling of bladder tissue: One source of weakness in this study, which
affected the evaluation scores, was that the bladder was mistakenly segmented as a
tumor. More data samples, including bladder regions, will allow the network to learn the
difference between bladder and tumor. However, the heterogenous appearance of soft
tissue sarcomas makes it difficult for the model to learn the variable shapes, intensity
values, and structures of the tumors. Data augmentation is helpful in this context, but it
is apparently not sufficient. However, a larger dataset has more potential to improve the
results.

Evaluation metrics: One of the issues that emerges from these findings is the selection
of appropriate evaluation metrics. For this thesis, we decided on the dice similarity score
and the surface overlap with tolerance score. As the results show, the two metrics can
vary significantly for the same patient. This means that depending on the metric, a
different model may be considered the best model. The SOCT with a tolerance of τ = 1.5
mm was used for the evaluation. Based on the selected preprocessing settings of the
pipeline, a tolerance of 1.5 mm allows a misclassification of a surface voxel if another
voxel has been segmented that is up to two voxels apart. Depending on the later use
of the segmentation mask, it might be appropriate to choose a larger tolerance. In the
case of small tumors on high-resolution scans, a lower tolerance limit is probably better
suited, but this also depends on the purpose of the segmentation.
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CHAPTER 8
Conclusion and Future Work

This chapter summarizes the presented work and concludes the findings of the conducted
experiments. Furthermore, an outlook on possible future topics is given.

8.1 Summary

The aim of this diploma thesis is the automatic segmentation of soft tissue tumors
on multimodal medical images. We addressed the major accompanying challenge of
multimodality for tumor segmentation. The same tumor can appear differently in each
imaging modality, and therefore the tumor segmentation by the radiologist depends on
the modality and on the intended purpose. Inspired by the success of fully convolutional
neural networks in multimodal segmentation tasks, we propose a network fusion strategy
that extends the concept of multimodal tumor segmentation: Multimodal encoders and
decoders are merged in a novel way to achieve modality-specific segmentations.

We evaluated the approach on a soft tissue sarcoma dataset that contains PET/CT
and MRI (T1-weighted, T2-weighted) data for each patient. Medical experts performed
tumor segmentation on T2 and PET separately, which allows us to evaluate the modality-
specific segmentation of T2 and PET. An important first step is the preprocessing of the
dataset to obtain co-registered scans across the modalities and also to standardize image
characteristics. The registration of the MRI sequences and the PET/CT is necessary to
achieve spatial overlap of all modalities belonging to the same patient.

This diploma thesis is dedicated to the architectural network design for multimodal
learning and co-segmentation and its accompanying aspects. The proposed fusion
strategy consists of modality-specific encoders that are fused at the end of the encoding
part of a network. The separation of the decoder paths allows the network to segment
different modality-specific tumor shapes.
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To assess the effectiveness of the proposed fusion strategy, we conduct an experiment in
which our approach is compared to various other baseline fusion strategies. We compared
the network architectures of U-Net, FCN_ResNet, FCN_DenseNet, and Sensor3D and
found that different architectures have an impact on multimodal feature learning. All
network architectures yield better results when using more than one modality. However,
the fusion design of the encoder and decoder has an essential impact on the result.
According to the experimental results, we can see that not only the PET segmentation
benefits from T2 scans but also the T2 segmentation improves when using an additional
PET scan as input to the network. We can, therefore, conclude that multimodal
segmentation for soft tissue tumors provides better results when using a combination of
MRI (T1, T2) and PET/CT.

The results of the experiments support the idea that modality-specific data distributions
have a negative influence on the segmentation result. In order to cope with these
modality-specific data distributions, we have identified two significant aspects to improve
the segmentation result. On the one hand, separating the input modalities into modality-
specific encoders provides better results, whereby the T1 and T2 data distributions are
similar and can be processed in a shared encoder path. On the other hand, the instance
normalization layers of the Sensor3D network demonstrates significant improvements
for the co-segmentation of PET and T2. FCN_DenseNet works best for the tumor
segmentation on T2, and Sensor3D works best for the tumor segmentation on PET.
Effective co-segmentation was only possible with the Sensor3D network architecture,
achieving superior performance for both T2 and PET segmentation simultaneously.

The main contribution of this work is the investigation of multimodal learning to perform
modality-specific tumor segmentation on multi-sequence MRI and PET/CT scans. To
conclude, the presented segmentation pipeline shows promising results for the soft tissue
sarcoma dataset. A more detailed investigation of normalization techniques and modality-
specific intensity distributions on a larger dataset could further improve the simultaneous
co-segmentation on PET and T2 scans.

8.2 Future Work

The presented multimodal segmentation pipeline for modality-specific tumor co-segmentation
offers possibilities for further improvement, but also provides insights for future research.

Larger dataset: Further evaluation on a larger dataset is needed to improve the
segmentation results. Many different types of soft tissue tumors exist, which can have
a very heterogeneous appearance on medical scans. As the selected dataset comprises
only 51 patients, the variability of the tumors cannot be covered adequately. Therefore,
a larger dataset with all different types of soft tissue tumors could definitely improve the
segmentation. The incorrect segmentation of the bladder could also be solved by using a
larger dataset, including more bladder samples, so that the network learns the difference
between the bladder and the tumor. Furthermore, an evaluation with other datasets can
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also be carried out to confirm the general validity of the statements about the network
architectures and encoder-decoder combinations.

Normalization layers and network architecture: Further research could also be
conducted to determine the effectiveness of normalization layers to cope with the dif-
ferent image intensity distributions of the modalities. Low-memory approaches, such
as the pseudo-3D approach, allow for a larger batch size, which in combination with
normalization layers, is likely to have a positive effect on the segmentation performance.
Since the FCN_DenseNet architecture performed very well in the experiments, it would
also be interesting to evaluate if additional normalization layers, in combination with the
pseudo-3D approach, would outperform the previous approaches.

All-in-one model for registration and segmentation of multimodal data: The
issue of automatic registration and segmentation in the same deep learning model is an
interesting topic that could be explored in further research. For the registration of the
multimodal scans, we used a separate method. However, it would be advantageous to
skip this step and use only one deep learning network that automatically registers and
segments the modalities in their original alignment and voxel spacing.
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