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Abstract. The success of machine learning methods for computer vision
tasks has driven a surge in computer assisted prediction for medicine
and biology. Based on a data-driven relationship between input image
and pathological classification, these predictors deliver unprecedented
accuracy. Yet, the numerous approaches trying to explain the causality
of this learned relationship have fallen short: time constraints, coarse,
diffuse and at times misleading results, caused by the employment of
heuristic techniques like Gaussian noise and blurring, have hindered their
clinical adoption.
In this work, we discuss and overcome these obstacles by introducing
a neural-network based attribution method, applicable to any trained
predictor. Our solution identifies salient regions of an input image in a
single forward-pass by measuring the effect of local image-perturbations
on a predictor’s score. We replace heuristic techniques with a strong
neighborhood conditioned inpainting approach, avoiding anatomically
implausible, hence adversarial artifacts. We evaluate on public mam-
mography data and compare against existing state-of-the-art methods.
Furthermore, we exemplify the approach’s generalizability by demon-
strating results on chest X-rays. Our solution shows, both quantitatively
and qualitatively, a significant reduction of localization ambiguity and
clearer conveying results, without sacrificing time efficiency.

Keywords: Explainable AI · XAI · Classifier Decision Visualization ·
Image Inpainting.

1 Introduction

The last decade’s success of machine learning methods for computer-vision tasks
has driven a surge in computer assisted prediction for medicine and biology.
This has posed a conundrum. Current predictors, predominantly artificial neural
networks (ANNs), learn a data-driven relationship between input image and
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which is managed by FFG. Thanks go to our project partner AGFA HealthCare for
providing valuable input.
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(a) (b) (c)

Fig. 1: Overview of marginalization: (a) original with annotated mass (red box)
before and after marginalization by our method; (b) local comparisons with pop-
ular methods (clockwise): original, blurring [9], inpainting (ours), and averag-
ing [29]; (c) ROC curves of the mammography classifier (green curve) vs. healthy
pixel inpainting only in healthy/pathological (blue/red curves) structures.

pathological classification, whose validity, i.e. accuracy and specificity, we can
quantitatively test. In contrast, this learned relationship’s causality typically
remains elusive [1,18,19]. A plethora of approaches have been proposed that aim
to fill this gap by explaining causality through identifying and attributing salient
image-regions responsible for a predictor’s outcome [7,8,9,26,25,28].

Lacking a canonical mapping between an ANN’s prediction and its domain,
this form of reasoning is predominantly based on local explanations (LE), i.e. ex-
plicit attribution-maps characterizing image-prediction tuples [18,9]. Typically,
these maps are loosely defined as regions with maximal influence towards the
predictor, implying that any texture change within the attributed area will sig-
nificantly change the prediction. Besides technical insight, these LE can provide
a key benefit for clinical applications: by relating the ANN’s algorithmic outcome
to the user’s a-priori understanding of pathology-causality, they can strengthen
confidence in the predictor, thereby increasing its clinical acceptance. To achieve
this goal, additional restrictions and clarifications are crucial. Qualitatively, such
maps need to be informative for its users, i.e. narrow down regions of medical
interest, hence coincide with medical knowledge and expectations [21]. Further-
more, the regions’ characteristic, i.e. the meaning of maximal influence, must be
clearly conveyed. Quantitatively, such LE need to be faithful to the underpinning
predictor, i.e. dependent on architecture, parametrization, and preconditions [2].

The dominant class of methods follow a direct approach. Utilizing an ANN’s
assumed analytic nature and its layered architecture, they typically employ a
modified backpropagation approach to backtrack the ANN’s activation to the
input image [26,30]. While efficiently applicable, the resulting maps lack a clear
a-priori interpretation, are potentially incomplete, coarse, and may deliver mis-
leading information [2,8,9,31]. Thereby they are potentially neither informative
nor faithful, thus pose an inherent risk in medical environments.

In contrast, reference based LE approaches directly manipulate the input
image and analyze the resulting prediction’s differences [9]. They aim to as-
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sess an image-region’s influence on prediction by counterfactual reasoning: how
would the prediction score vary, if the region’s image-information would be miss-
ing, i.e. its contribution marginalized? The prevailing heuristic approaches, e.g.
Gaussian noise and blurring or replacement by a predefined colour [29,8,9], have
been advanced to local neighborhood [31] and stronger conditional generative
models [7,28]. Reference based LEs have the advantage of an a-priori clear and
intuitively conveyable meaning of their result, hence address informativeness
for end-users. However, their applicability for medical imaging hinges on the
utilized marginalization technique, i.e. the mapping between potentially patho-
logical tissue representations and their healthy equivalent. Resulting prediction-
neutral regions need to depict healthy tissue per definition. Contradictory, the
presented approaches introduce noise and thereby possibly pathological indi-
cations or anatomically implausible tissue (cf. Fig. 1). Hence, they violate the
needed faithfulness [9].

While dedicated generative adversarial networks (GANs) for medical images
deliver significantly improved results, applications are hindered by possible res-
olutions and limited control over the globally acting models [3,4,5,6]. In [22], the
locally acting, but globally conditioned, per-pixel reconstruction of partial con-
volution inpainting (PCI) [20] is favoured over GANs, thereby enforcing anatom-
ically sound, image specific replacements. While overcoming out-of-domain is-
sues, this gradient descent based optimization method works iteratively, hence
cannot be used in time restrictive environments.

Contribution: We introduce a resource efficient reference based faithful and
informative attribution method for real time pathology classifier interpretation.
Utilizing a specialized ANN and exploiting PCI’s local per-pixel reconstruction,
conditioned on a global healthy tissue representation, we are able to enforce
anatomically sound, image specific marginalization, without sacrificing compu-
tational efficiency. We formulate the ANN’s objective function as a quantitative
prediction problem under strict area constraints, thereby clarifying the resulting
attribution map’s a-priori meaning. We evaluate the approach on public mam-
mography data and compare against two existing state-of-the-art methods. Fur-
thermore, we exemplify the method’s generalizability by demonstrating results
on a second unrelated task, namely chest X-ray data. Our solution shows, both
quantitatively and qualitatively, a significant reduction of localization ambiguity
and clearer conveying results without sacrificing time efficiency.

2 Methods

Given a pathology classifier’s prediction for an input image, we want to estimate
its cause by attributing the specific pixel-regions that substantially influenced the
predictor’s outcome. Informally, we search for the image-area that, if changed,
results in a sufficiently healthy image able to fool the classifier. The resulting
attribution-map needs to be informative for the user and faithful to its under-
pinning classifier. While we can quantitatively test for the latter, the former is
an ill-posed problem. We therefore formalize as follows:
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Fig. 2: Attribution framework: The input image is encoded using the classifier’s
features (left) and attenuated to enclose pathological regions (middle). During
training, counterfactual images are produced by the marginalization-net (right),
fed by thresholded attribution (pink blocks) and input image (blue blocks).

Let I denote an image of a domain I with pixels on a discrete grid m1×m2,
c a fixed pathology-class, and f a classifier capable of estimating p(c|I), the
probability of c for I. Also, let M denote the attribution-map for image I and
class c, hence M ∈ Mm1×m2({0, 1}). Furthermore, assume a function π(M)
proficient in marginalizing all pixel regions attributed by M in I such that the
result of the operation is still within the domain of f . Hence, π(M) yields a
new image similar to I, but where we know all regions attributed by M to be
healthy per definition. Therefore, assuming I depicts a pathological case and M
attributes only pathology pixel representations, π(M) is a healthy counterfactual
image to I. In any case p(c|π(M)) is well defined. Using this notation, we can
formalize what an informative map M̂ means, hence give it an a-priori, testable
semantic meaning. We define it as

M̂ := argmin
M∈M̂

d(M) where M̂ := {p(c|π(M)) ≤ θ, d(M) ≤ δ,M ∈ S},

where θ is the classification-threshold, d a metric measuring the attributed area,
δ a constant limiting the attributed area, and S the set of compact and connected
masks. Any map of Mm1×m2({0, 1}) can be (differentiably) mapped into S by
taking the smoothed maximum of a convolution with a Gaussian kernel [16,9]. In
this form, M̂ is clearly defined, and can be intuitively understood by end-users.

Solving for M̂ requires choosing (i) an appropriate measure d (e.g. the map
area in pixels), (ii) an appropriate size-limit δ (e.g. n times average mass-size
for mammography), and (iii) a fitting marginalization technique π(·). In the
following we describe how we solve for M̂ through an ANN, and overcome the
out-of-domain obstacles by partial convolution [20] for marginalization.

2.1 Architecture

Iteratively finding solutions for M̂ is typically time-consuming [9,22]. There-
fore, we develop a dedicated ANN, capable of finding the desired attribution
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in a single forward pass. To this end, the network learns on multiple reso-
lutions, to combine relevant classifier-extracted features (cf. Fig. 2). Inspired
by [8], we build on a U-Net architecture, where the down-sampling, encoding
branch consists of the trained classifier without its classification layers. These
features, xi,j,l, are subsequentially passed through a feature-filter, performing
xi,j,l · σ((Wmρ(W ᵀ

l xi,j,l + bl) + bm)) where ρ is an element-wise nonlinearity
(namely a rectified linear unit), σ a normalization function (sigmoid function)
and W. resp. b. linear transformation parameters. This is similar to additive
attention, which, compared to multiplicative attention, has shown better perfor-
mance on high dimensional input-features [24]. The upsampling branch consists
of four consecutive blocks of: upsampling by a factor of two, followed by convolu-
tion and merging with attention-gate weighted features from the classifier of the
corresponding resolution scale. After final upsampling back to input-resolution,
we apply 1 × 1 conv. of depth two, resulting in two channels c1,2. The final

attribution-map M̂ is derived through thresholding |c1|
|c1|+|c2| . Intuitively, the net-

work attenuates the classifier’s final features, generating an initial localization.
This coarse map is subsequently refined by additional weighting and information
from higher resolution features (cf. Fig. 2). We train the network, by minimizing

L(M) = φ(M) + ψ(M) + λ · R(M), s.t. d(M) ≤ δ

where φ(M) := −1 · log(p(c|π(M))), ψ(M) := log(odds(I)) − log(odds(π(M))),

and odds(I) = p(c|I)
1−p(c|I) , hence weigh the probability of the marginalized image,

enforcing p(c|π(M)) ≤ θ. We introduced an additional regularization-term: a
weighted version of total variation [23], which experimentally greatly improved
convergence. All terms where normalized through a generalized logistic function.
The inequality constraint was enforced by the method proposed in [15]. Note that
after mapping into S, any solution to L will also estimate M̂ , thereby yielding
our desired attribution-map. The parametrization is task/classifier-dependent
and will be described in the following sections.

2.2 Marginalization

As we need to derive p(c|π(M)), our goal is to marginalize arbitrary image re-
gions marked by our network during its training process. Therefore, we aim for
an image inpainting method to replace pathological tissue by healthy appear-
ance. The result should resemble valid global anatomical appearance with high
quality local texture. To address the these criteria we apply the U-Net like ar-
chitecture with partial convolution blocks of [20] which gets an image and a hole
mask as input (cf. Fig. 2). Partial convolution considers only unmasked inputs
in a current sliding window to compute its output. Where it succeeded, hole
mask positions are eliminated. This mechanism helps conditioning on local tex-
ture. The loss function (LPCI) balances local per-pixel reconstruction quality
of masked/unmasked regions (Lhole/Lvalid), against globally sound anatomical
appearance (Lperc,Lstyle). An additional total variation term (Ltv) ensures a
smooth transition between hole and present image regions in the final result.
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This yields LPCI = Lvalid + 6 · Lhole + 0.05 · Lperc + 120 · Lstyle + 0.1 · Ltv where
parametrization follows [20]. The architecture’s contraction path consists of 8
partial convolution blocks with a stride of 2. The kernels of depth 64, 128, 256,
512, . . ., 512 have sizes 7, 5, 5, 3, . . ., 3. The expansion path, a mirrored version
of the contraction path, contains upsampling layers with a factor of 2, kernel
size of 3 at every layer, and a final filterdepth of 3. Each block contains batch
normalization (BN) and ReLU/LeakyReLU (alpha=0.2) activations in the con-
traction/expansion paths which are connected by skip connections. Zero padding
of the input was applied to control resolution shrinkage and keep aspect ratio.

3 Experimental Setup

Datasets: We evaluated our framework on two different datasets, on mammog-
raphy scans and on chest X-ray images. For mammography, we complemented
the 1565 annotated, pathological CBIS-DDSM scans containing masses [17] with
2778 healthy DDSM images [10] and downsampled them to 576x448 pixels. Data
was split into 1231/2000 mass/healthy samples for training, and into 334/778
scans for testing. There was no patient-wise overlap between the training/test
data. We demonstrate generalization on a private collection of healthy and tu-
berculotic (TBC) frontal chest X-ray images, at a downsampled resolution of
256x256. We split healthy images into sets of 1700/135 for training respectively
validation set, and TBC cases into 700/70. The test set contains 52 healthy and
52 TBC samples. No pixel-wise GT information was provided for this data.

Classifiers: The backbone of our mammography attribution network is a
MobileNet [11] classifier for distinguishing between healthy samples and scans
with masses. The network was trained using the Adam optimizer with batchsize
of 4 and learning rate of 1e-5 for 250 epochs with early stopping. The network
was pretrained with 50k 224x224 pixel patches from the training data for the
same task. The TBC attribution utilized a DenseNet-121 [12] classifier for the
binary classification task of healthy or TBC cases. It was trained using the SGD
momentum optimizer with a batchsize of 32 and learning rate of 1e-5 for 2000
epochs. This network was pretrained on the CheXpert dataset [13].

Marginalization: The chest X-ray images have one magnitude smaller res-
olution than the mammography scans, thus we removed the bottom-most blocks
from the contraction and expansion paths. Both inpainter networks were trained
on healthy training samples with a batch size of 1 for mammography and 5 for
chest X-ray. Training was done in two phases, the first phase with BN after each
partial convolution layer and the second with BN only in the expansion path.
The network for the mass classification task was trained with learning rates of
1e-5/1e-6 and for the TBC classification task of 2e-4/1e-5 for the two phases. For
each image irregular masks were generated which mimic possible configurations
during the attribution network training [20].

Attribution: We used the last four resolution-scales of each classifier, and
in all cases the features immediately after the activation function, following the
convolution. The weights of the pre-trained ANNs were kept fixed during the
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complete process. Filterdepths of the upsampling convolution blocks correspond
to the equivalent down-sampling filters, filter-size is fixed to 1× 1. Upsampling
itself is done via neighborhood upsampling. We used standard gradient descent,
and a cyclic learning rate [27], varying between 1e-6 and 1e-4, and trained for up
to 5000 epochs with early stopping. We thresholded the masks at 0.55, and used
a Gaussian RBF with σ = 5e-2, and a smoothing parameter of 30. All trainable
weights where random-normal initialized.

4 Results and Conclusion

Marginalization: To evaluate the inpainter network we assessed how much the
classification score of an image changes, when pathological tissue is replaced.

Thus, we computed ROC curves using the classifier on all test samples (i)
without any inpainting as reference, and for comparison, randomly sampled
inpainting (ii) only in healthy respective (iii) pathological scans over 10 runs
(Fig. 1). The clear distance between the ROC curves of the mammography image
classifiers without any inpainting, yielding an AUC of 0.89, and with inpainting
in pathological regions, resulting in an AUC of 0.86, shows that the classifier
is sensitive to changes around pathological regions of the image. Moreover, it is
visible that the ROC curves of inpainting in healthy tissues with an AUC of 0.89
follow closely the unaffected classifier’s ROC curve (Fig. 1). The AUC scores for
the TBC classifier without and with inpainting in healthy tissue are 0.89 and 0.88
which proves the above mentioned observations. Pathological tissue inpainting
was ommitted in this case due to the lack of pixel-wise annotations.

Attribution: We compared our attribution network against the gradient
explanation saliency map [26] (SAL), and the network/gradient-derived Grad-
CAM [25] visualizations. We limited our comparisons to these direct approaches,
as they are widely used within medical imaging [13], and inherently valid [2].
Popular reference based approaches either utilize blurring, noise or some other
heuristic [9,8,31], or were not available [7], therefore could not be considered.
Quantitatively, we relate (i) the result-maps M̂ to both organ, and ground truth
(GT) annotations, and (ii) to each other. Particularly for (i) we studied the
Hausdorff distances H between GT and M̂ indicating location proximity. Lower
values demonstrate better localization in respect to the pathology. Further, we
performed a weak localization experiment [8,9]: per image, we derived bounding
boxes (BB) for each connected component of GT and M̂ attributions. A GT BB
counts as found, if any M̂ BB has an IOU ≤ 0.125. We chose this threshold, as
a proficient classifier presumably focuses on the masses’ boundaries and neigh-
borhoods, thereby limiting possible BB-overlap. We report average localization
L. For (ii) we derived the area ratio A between M̂ and organ-mask (breast-area)
or whole image (chest X-ray). Again, lower values indicate a smaller thereby
clearer map. Due to missing GT we could only derive (ii) for TBC. All measure-
ments were performed on binary masks, hence GradCAM and SAL had to be
thresholded. We chose the 50, 75, 90 percentiles, i.e. compared 50, 25, 10 percent
of the map-points. Where multiple pathologies, or mapping results occurred we
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(a) (b) (c) (d)

Fig. 3: Result attribution heatmaps for mammography [17] and chest X-ray [14]:
(a) original image overlayed with annotation contours (and arrows for missing
GT), (b) our attribution framework. (c) GradCAM [25] (d) Saliency [26].

used the median for a robust estimation per image. Statistically significant dif-
ference between all resulting findings was formalized using Wilcoxon signed-rank
tests, for α < 0.05. Additionally we followed [2], and tested our network with
randomised parametrization (labels have no effect in our case).

As seen in Table 1, our framework achieves significantly lower H, than either
GradCAM or SAL at all threshold levels. Moreover, we report significantly better
weak localization (L) which underlines the higher accuracy of our approach.
Qualitatively our attribution-maps are tighter focused (c.f. Fig. 3(b)) and enclose
the masses. The former is also expressed by the lower overlap values A. All p-
values where significantly below 1e-2, hardening our results. Randomization of
the ANN’s weights yields pure noise maps, hence we pass [2]’s checks.

Timing: We estimated the time needed for a single attribution map, one
forward pass, by averaging over ten times repeated map derivations for all images
of the resp. test sets. These were compared with the analogous timings of GRAD
and SAL. Additionally, as a reference for iterative methods, we compared with
[22] that, using same marginalization technique, yields equivalent maps.

Our model is capable of deriving 75 mammography maps per second (mps)
utilizing a GPU (NVIDIA Titan RTX). This compares favourably to both GRAD
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P Hours Hgrad Hsal Lours Lgrad Lsal

50 188.12±68.3 296.29±54.4 240.83±36.2 0.45 0.06 0.27

75 188.12±68.3 274.86±40.0 257.85±38.6 0.45 0.23 0.30

90 188.12±68.3 243.80±59.6 259.57±43.7 0.45 0.28 0.25

P Amammo
ours Amammo

grad Amammo
sal Atbc

ours Atbc
grad Atbc

sal

50 0.07±0.04 1.10±0.10 1.10±.14 0.06±0.0 0.50±0.0 0.50±0.0

75 0.07±0.04 0.55±0.21 0.55±0.2 0.06±0.0 0.25±0.0 0.25±0.0

90 0.07±0.04 0.22±0.40 0.22±0.43 0.06±0.0 0.10±0.0 0.10±0.0

Table 1: Top: Hausdorff distances H and weak localization results L, relating
maps M̂ to GT ; Bottom: relating maps M̂ to the organ resp. image-size

and SAL, 50 resp. 31 mps, and significantly outperforms the iterative method
(27 seconds per map). Considering the smaller X-ray images, these throughputs
increase up to a factor of three, sufficient even for real time environments.

Conclusion: In this work, we proposed a novel neural network based attri-
bution method for real time interpretation of pathology classifiers. Our reference
based approach enforces domain aware marginalization, without sacrificing com-
putational efficiency. Overcoming these common obstacles, our approach can
provide further confidence, and thereby increase critical user acceptance. We
compared our method with state-of-the-art techniques on two different tasks,
and show favorable results throughout. This underlines the suitability of our
approach as an interpretation tool in radiology workflows.
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