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ABSTRACT

This paper describes CognitiveAR, a system that seamlessly inter-
faces AR devices with smart city environments. Edge computing
nodes distributed throughout the city enable multi-user cognitive
assistance applications that require (1) real-time sensor data from the
environment, such as approaching cars, and (2) computing resources
for low-latency video processing. We discuss three such applications
to elicit requirements for a platform to support them, and present
our system design.

Index Terms: Computer systems organization—Architectures—
Distributed architectures; Human-centered computing—Human
computer interaction (HCI)—Interaction paradigms—Mixed / aug-
mented reality

1 INTRODUCTION

Cognitive augmentation has been explored by researchers, artists,
and science fiction writers alike. Modern wearable augmented reality
(AR) devices, the recent advancements in artificial intelligence (AI)
techniques, and the unprecedented availability of sensory data from
the environment and digitally persisted knowledge, have created
exciting new opportunities for enhancing human cognition. Cogni-
tive assistance applications use these technologies to synthesize an
overlay that assists people with everyday tasks. These applications
can help people with cognitive deficits by giving them hints about
social interactions [11, 27], improve the safety of cyclists in urban
areas by highlighting dangerous situations, or improve situational
awareness of emergency response teams.

Smartglasses are challenged to enable a wide range of real-time
applications, unless the devices are highly optimized for a specific
use case using ASICs. For AR devices to be practical, it is clear that
we will not own a dozen different devices, one for each use case.
General-purpose AR devices are the future, but it is challenging to
develop cognitive assistance applications, because such applications
require real-time access to context-specific data from the environ-
ment, or need to run complex computer vision models that are too
computationally expensive to run on the device itself. Offloading
AI tasks to do real-time analytics on the video and audio feeds from
the wearable, as well as processing sensor data in real-time on the
wearable, will be key. Using cloud-based solutions, such as Azure
Cognitive Services, incurs too much latency to provide a crisp user
experience [11, 26]. Edge computing [31] has been recognized as
a key enabler for this new family of cognitive assistance applica-
tions [21, 26, 27]. Smart city sensor arrays and cameras deployed
throughout the city [1], as well as computational resources with AI
accelerators at the edge of the network [21], are key technologies to
make cognitive assistance work in urban areas.
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Figure 1: The main architectural components of our system: (1)
Runtime platform that provisions AI services from a repository in
the cloud (1a) to edge nodes (1b), (2) edge node, such as a smart
lamp post, providing compute resources and access to environmental
sensor data; (3) device-specific client software on an AR or mobile
device, that facilitates transparent access to the system; (4) actual AR
application running on the specific device.

Efforts to develop edge computing platforms for multi-user cog-
nitive augmentation that can scale to an entire city while providing
real-time interaction is still niche research [11, 16, 34]. There are
experimental industry solutions to support low-latency AI services at
the edge. For example, Microsoft Azure Live Video Analytics uses
Azure IoT Edge to deploy cognitive services on edge devices, al-
lowing real-time AI-based video analytics. The complexity of these
heterogeneous and highly distributed computing systems makes it
hard for AR engineers to operate the necessary application services
(such as AI models for object detection), or access sensor data in
real time. Platforms should do more of the heavy lifting, and pro-
vide common application functionality such as tracking objects in
a global coordinate space, enabling precise device positioning, and
abstracting access to distributed infrastructure.

In this paper, we propose CognitiveAR: a platform that makes
it easier for AR engineers to develop scalable cognitive assistance
applications. Figure 1 shows the overall architecture. The platform
federates distributed edge resources to run our platform services,
and autonomously manages application-specific services for, e.g.,
offloading AI-based video processing. Moreover, the platform pro-
vides transparent access to sensor data published by edge nodes, via
a scalable messaging system. We introduce a global object and user
tracking system which we call cyber-physical object positioning
(CPOP). CPOP enables the system to accurately display the position
of physical objects on the user’s device, that are not in their phys-
ical field of view. Object coordinates are published as sensor data
via the platform’s messaging system. We discuss several cognitive
assistance use cases that highlight requirements and challenges. We
present early results that demonstrate (1) how developers can access
the system via high-level APIs, (2) the limitations of cloud-based
solutions, and (3) the feasibility of running CPOP on edge nodes.
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Figure 2: Silhouette of an approaching car behind a wall, as seen by
a cyclist using our proposed smart bicycle glasses app.

2 URBAN COGNITIVE ASSISTANCE APPLICATIONS

Cognitive systems collect and process data from their environment
with the goal of enhancing human cognitive abilities such as per-
ception, learning, reasoning or planning [17]. As AR devices for
assistive technology [12] become more widespread, the need arises
to provide infrastructure and platform support on a larger scale,
particularly for urban use cases. In this section we present three
application scenarios to elicit requirements for such platforms. In
subsequent research, we plan to implement these applications to
demonstrate the efficacy of our system.

2.1 Application Scenarios
The Smart Bicycle Glasses We have seen a great bicycle

boom in 2020 in response to the COVID-19 pandemic [5]. Navigat-
ing safely through the city on a bike has become more important
than ever. We believe that a navigation system that displays the route
directly augmented over the real road is superior to apps on a smart-
phone that force the cyclist to draw their gaze away from the road
to look at a phone screen. We envision an AR app, running on AR
glasses such as the Nreal Light, that provides navigation and safety
features. To prevent accidents with cars at street crossings, our smart
bicycle glasses notify the cyclist of an approaching vehicle behind a
building or other occluders, well before it reaches the crossing or can
be seen by the cyclist. The occluded car is visualized as a silhouette
or bounding box blended over the real-world view of the cyclist, as
shown in Figure 2. To provide this kind of safety feature, the smart-
glasses need to receive data about approaching cars (size, location)
in a format that can be translated to the coordinate frame of the AR
device. A distributed camera system in the city, with units mounted
above street crossings [19], could provide a continuous video feed
of the traffic from different angles. Sophisticated object recognition
algorithms are necessary to analyze the video feed, detect cars, and
estimate their position and speed in real time.

This use case demonstrates the requirement for AR devices to
“see through walls”, by accessing environmental sensor data such
as the position of approaching cars. These data are synthesized by
performing real-time video processing on urban cameras.

Cognitive Assistance for People with Disabilities Individ-
uals living with autism spectrum disorder (ASD) often have diffi-
culties with communication and social interaction, especially when
it comes to interpreting facial expressions and emotions [3]. The
American Psychiatric Association points out that even “Adults who
have developed compensation strategies for some social challenges
still struggle in novel or unsupported situations and suffer from
the effort and anxiety of consciously calculating what is socially
intuitive for most individuals.” [3]. There have been various studies
using AR applications in interventions in people with ASD, show-
ing promising results [4]. While we believe virtual and augmented
reality applications are an excellent tool for training and therapy of
cognitive abilities, we also want to support the development of assis-
tive technology in this area. Our platform can provide the resources
needed to develop cognitive assistance apps that help people with

ASD, or similar cognitive disabilities, to understand their environ-
ment better and for example interpret emotions of other people better.
Imagine a person with ASD, wearing a head-worn AR device when
in a face-to-face conversation with another person. The cognitive
assistance app recognizes and classifies the facial expression of the
other person and provide this information as visual or verbal infor-
mation to the user in real time. These and other similar applications
proposed in [28] can have an immense impact on the lives of people
with cognitive impairments.

Because analyzing the video feed from the camera of the AR de-
vice in real time is a computationally expensive task that may require
specialized AI hardware, it is not feasible to do this computation
on the AR device itself. Instead, the AR app needs to offload the
video stream of the device’s camera onto a more powerful comput-
ing platform where custom AI-based video analytics can be used to
recognize faces and classify facial expressions in real time.

Emergency Response Applications Floods affect millions of
people each year. In order to be prepared for these natural disasters,
flood managers run simulations to develop flood plans and field
personnel train in order to be prepared in case of emergency. Virtual
Reality applications have already been used successfully to create
safe and inexpensive training environments for emergency response
training [10, 30] with predefined scenarios or sophisticated flood
simulation systems [14]. The major limitation of these VR systems is
that the virtual environments are still just approximations for the real
world. Furthermore, they can only be used for training and planning
and are less useful during a real emergency situation. Hence, we
propose an AR app that shows the user live flooding data, captured
by a city-wide distributed camera system, as well as simulation data
to look at predictions of how the flooding event will unfold. Field
personnel equipped with AR devices can see water levels rising a few
streets away, or look at virtual markers augmented over the buildings
next to them to see predicted water levels at a user-selected point
in time. These data are provided by a connected flood simulation
system, such as Visdom [35]. Furthermore, live camera data can be
used to evaluate and refine the simulation at runtime.

For such an emergency response app to be effective, it needs live
access to sensors, such as the mentioned distributed camera system,
and fast object recognition to identify breaches in dikes and rising
water levels. A virtual city model that would be used by a connected
flood simulation system to calculate predictions, needs to be mapped
correctly onto the real world. Furthermore, correct localization of
water flooding the streets and field personnel in a shared global
coordinate system is vital, to show flooding events at the correct
location in real time.

2.2 Summary of Requirements
From our three use cases outlined above, we derive several key
requirements. For our platform to support a wide range of cognitive
assistance AR applications, it needs to:

(1) Allow apps to access sensor data, providing environment
information in real time; Sensor data needs to be accessible as both
raw data and as labeled data. The former allows a client application
to visualize and act upon what the system is seeing, while the latter
simplifies the user’s decision making process by providing output
from computationally intensive AI services.

(2) Let apps offload the device’s video feed onto a more powerful
computing platform; In order to maximize processing capability, and
utilize the perspective seen by the users themselves, a client should
be able to send a video feed (as captured on the AR device) to a
computing platform that provides low-latency processing, in order to
use that feed in combination with the data provided by other sensors.

(3) Provide different AI services to enable a wide range of use
cases; A backend platform should provide a range of AI services
accessible by any AR device, agnostic to their particular hardware
features. The platform should allow the AR application to access
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processed environmental sensor data (with additional processing
of its own live video feed), in order to offload these computations,
both to encourage more robust algorithms, and maximize device
performance and battery lifetime.

(4) Track users and objects; The platform needs to be able to
track objects in the environment and, privacy considerations permit-
ting, users as well, and register both in a shared global coordinate
space. This is useful for ensuring that virtual augmentations are
displayed at the correct locations. In all cases, users’ devices will
track themselves, which is needed to place annotations.

3 RELATED WORK

In the following we briefly discuss previous research in the area
of cognitive assistance applications, edge-based AR platforms, and
smart city edge infrastructure.

A number of academic systems have been developed to help
in navigating around urban environments [2, 36]. One limitation
shared between these types of systems is in the degree to which
virtual augmentations are registered and localized to objects and
users in the real world, at city scale, which a unified platform of
augmentations would help to solve.

The work by Ha et al. introduces Gabriel [11], a wearable cog-
nitive assistance system that uses edge nodes (“cloudlets”) and
introduces the concept of “sensor flows” and “cognitive flows”.
Whereas their approach uses cognitive VMs for different capabilities
(e.g., face recognition, OCR, motion classifiers) and focuses primar-
ily on offloading the processing from wearable devices, we utilize
lightweight containers to provide composable AI services that are
fully managed by the runtime across the lifecycle. Gigasight [28]
is an Internet-scale repository of video content to perform edge an-
alytics. While our work uses multi-modal AI and AR techniques
to provide cognitive assistance, their approach focuses on video
analysis and the enforcement of privacy and access policies. Our
approach builds on existing work in the area of AR & edge com-
puting platforms. Ren et al. [25] present a hierarchical computation
architecture that connects the physical user to the cloud by means of
an edge layer. Whereas their architecture uses static configurations
of components deployed in either the cloud or the edge layer, our
approach focuses on dynamic reconfiguration and orchestration of
migratable AI service pods to achieve efficient and optimal process-
ing. The DARE system [16] uses “edge servers” to offload image
data from client devices in order to perform AR tasks like object
detection. It focuses on the concept of “Quality of Augmentation
(QoA)” and defines a protocol for dynamic adaptation of frame rate
and compression factor. While DARE focuses on the particular issue
of QoA, our approach more broadly supports the development of
cognitive assistance applications.

Current industry solutions for edge-based data analytics include a
Microsoft offering that deploys Azure Cognitive Services using its
Azure IoT Edge system, or Amazon’s AWS Greengrass. Our runtime
platform architecture is similar in that it provides a container-based
computing runtime on edge devices. However, it adds high-level
platform support for object tracking and aggregating sensor data.

More and more smart city projects are deploying edge resources
and sensors throughout the city. An example is the Array of
Things [8], where several environmental data sensors, a camera,
and two single-board computers for computation and communica-
tion, are enclosed in a weatherproof casing and mounted on lamp
posts. They are interconnected using LTE, 5G, or WiFi. Similar
smart city sensing projects focus on very specific urban phenomena,
like traffic congestion, or air pollution, as discussed in [1]. There are
projects that deal with the use and organization of pervasive cam-
era networks [19, 32] but they do not include concrete technology
proposals for edge nodes. We are looking into very specific ways of
building edge nodes that can be deployed as smart city infrastructure
to enable multi-user AR applications.

4 COGNITIVEAR: A PLATFORM FOR SMART CITY-SCALE
COGNITIVE ASSISTANCE

We present CognitiveAR, a platform to enable applications described
in Section 2. We first describe the architectural components of the
system, shown in Figure 1. We then provide a detailed explanation
of the core system mechanisms, shown in Figure 3.

4.1 System Overview
4.1.1 Runtime Platform
The runtime platform abstracts the underlying edge computing in-
frastructure and provides an execution environment for both platform
and application services. We use a container-based edge computing
system based on Kubernetes that provides additional platform-level
facilities for operating AI applications [22]. The edge node runtime
federates multiple edge computers of a node and provisions them on-
demand. The runtime orchestration runs in the cloud and schedules
application services to the edge on demand using a custom container
scheduler [24]. Platform services include an object tracking posi-
tioning system called CPOP, a message-oriented middleware for
device communication, and our own AI analytics offloading service
CogStream. We provide several off-the-shelf AI models that are
common across use cases and can be used as application services,
much like Azure cognitive services. We also allow personalized
or domain-specific models that application developers previously
uploaded, and that are automatically deployed by the system where
they are needed, for example based on physical proximity between
users and edge nodes.

4.1.2 Edge Nodes
The edge nodes host the platform runtime for executing applica-
tion services. They are composed of multiple edge computers, as
well as cameras and other sensors, and are interconnected with each
other via our messaging middleware. For the edge computers, we
are currently experimenting with high-density computing hardware,
such as NVIDIA’s Jetson platform [18], and specialized AI hardware
such as the Google Edge TPU [7]. Edge nodes should be compact
and fit on, for example, a street lamp post. However, our platform
is agnostic to the hardware, and can be used with any commonly
proposed edge computing architecture [20]. We are currently investi-
gating how different wireless technologies, like 5G and 5GHz WiFi,
for connecting user devices to the nodes, as well as connecting the
nodes to the internet, affect the overall responsiveness of the system.

4.1.3 Platform Client
The platform client provides a device-specific SDK that includes pro-
tocol implementations to communicate with our system. The SDK
provides high-level APIs to (a) use CPOP to position objects cor-
rectly in the field of view, (b) send and receive sensor data from the
platform via EMMA, (c) request and consume AI services through
CogStream, and (d) access third-party application services. A con-
nection manager proxies network connections in order to perform
graceful handoffs between edge nodes, or mask network failures.

4.1.4 AR App
AR apps for devices like the HoloLens or Nreal Light smartglasses,
are commonly implemented using Unity and the Mixed Reality
Toolkit (MRTK). The purpose of our platform is to facilitate the
development and operation of smart city-scale cognitive assistance
applications, such as the ones we outlined in Section 2. In these
applications, common tasks include accessing the video or sensor
feed of the device and invoking remote services, or asynchronously
acting on environmental sensor data like drawing the silhouette of a
car that is being occluded by a house, as shown in Figure 2. These
tasks are streamlined by the platform client SDK, thereby reducing
boilerplate code in AR apps.
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Figure 3: Internal architecture of our platform

4.2 Platform Mechanisms

We describe the core mechanisms of our runtime platform. These
are designed to deal with the highly dynamic nature of smart city
environments. Capabilities such as object tracking services, message
brokers, or AI services are provisioned by the runtime system as
containerized applications, using optimized deployment topologies.

4.2.1 Cyber-Physical Object Positioning (CPOP)

To correctly display virtual representations of physical objects in
AR apps, our system tracks objects and devices in a global coordi-
nate space. To track physical objects like cars, we use monocular
video data from stationary cameras, and state-of-the-art deep learn-
ing models for detecting objects and determining their position.
To track device positions, we synthesize data from mobile device
location services, device tracking sensors, and spatial anchor ser-
vices. Our system integrates these methods and applies sensor fusion
techniques, similar to [13].

Object Tracking Physical object tracking involves several steps.
First, objects of interest are detected in monocular frames using ob-
ject detection algorithms such as You Only Look Once (YOLO) [15].
After the initial bounding boxes and classes of objects are deter-
mined, objects are tracked in real time by finding rotation and scale-
invariant features per detected object and tracking them over multiple
successive frames [37]. This approach solves the problem of occlu-
sion, because occluded objects can be found and correctly identified
when they reappear in the camera view. Additionally, it allows us
to build a motion model for each object. This enables us to use
time-intensive algorithms and compensate for latency by interpolat-
ing the position of detected moving objects over several frames and
predicting their next location [29].

From the 2D camera image of the edge node, we generate a
depth map by using existing deep learning models for depth estima-
tion [38]. Combining this depth map with the undistorted 2D camera
image and the intrinsic camera parameters allows us to approximate
the 3D coordinates of tracked objects in the camera space. Our
approach yields the object’s position, bounding box, motion model
and label in camera space.

User Tracking To be able to place virtual information at the
correct position in the field of view of the user, we need to know
the user’s position relative to points of interest, such as tracked
objects. An approximate global position could be estimated using
GPS or WiFi data from a user’s smartphone, but in most cases
(e.g., for our smart bicycle glasses) we need higher accuracy. If a
user is visible from a camera, they could be tracked like any other
moving object. However, since our platform does not necessarily
have video coverage over the whole city (with edge nodes installed
only at strategic positions) it is possible that users are connected
to the system while not tracked in a video stream. Our approach,
which tries to determine the exact position of the user, requires an
area-wide distribution of Azure Spatial Anchors (ASAs). ASA is a
Software-as-a-Service offering that allows users to store and retrieve
spatial-point-cloud information to localize themselves precisely at
the same physical space. During the installation and setup of our
platform, ASAs have to be manually placed at various positions
around the city with their geolocation, and that of other nearby
ASAs, uploaded to edge nodes in the proximity. An AR device can
retrieve a list of ASAs from the closest edge node and try to find
them in its field of view (FOV). Once an ASA is located, an AR
device can record its own position relative to the ASA; thus, AR
devices are capable to fully self-localize.

Global Coordinate Space Studies have shown that global
navigation satellite systems (GNSS) have a mean accuracy of about
4.9 meters with smartphones under open sky and that the accuracy
in urban environments correlates to building height [33]. Since a
GNSS does not provide sufficient accuracy for our platform, we
decided to construct a global coordinate system based on a city
map and corresponding height field for altitude information. This is
crucial to be able to register all platform components (edge nodes,
tracked objects, ASAs, users) in the same shared global coordinate
space and accurately position virtual objects even in hilly areas.
Global coordinates of edge nodes and ASAs are recorded when
they are installed or created (taking the height-field information into
account). Relative coordinates from tracked objects can then be
transformed from the camera space of edge node cameras to world
space. Since users track themselves, the client software on the AR
device can transform all global coordinates from world space to the
view space of the user or transfer its own position to the platform.
Virtual information, such as bounding boxes of tracked objects, can
be positioned accurately in the field of view of the user. While
sending user positions to the platform can be useful, our platform
also supports operation without that, out of concern for privacy.

4.2.2 Low-latency Device Communication

We use the EMMA [23] messaging middleware to facilitate loosely
coupled communication between devices. It is based on the Message
Queue Telemetry Transport (MQTT) protocol, which is a lightweight
binary publish–subscribe protocol, commonly found in Internet of
Things scenarios. Devices that communicate in our system include
AR devices, mobile devices, edge nodes, or cloud nodes. AR devices
publish data, such as their location, to other participants in the sys-
tem. Conversely, edge nodes use EMMA to publish sensor data, or
coordinates of objects tracked by CPOP, to participants in proximity.
Edge nodes can serve as brokers to facilitate efficient broadcast or
multicast of messages for devices in proximity. When devices are
mobile, the system takes care of connection handoff, such that the
device is always connected to the closest broker. EMMA automat-
ically deploys brokers to resources based on current demand, and
re-configures client–broker connections to optimize latency. We add
content-based message filtering that allows AR engineer to express
queries to, for example, receive the coordinates of specific object
types in a particular radius from the wearable.

4



To appear in 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW).

4.2.3 CogStream AI Analytics System
CogStream is the subsystem that enables offloading of AI workloads
from AR devices to edge nodes. Examples of such tasks are ob-
ject detection, depth estimation, or interpreting facial expressions.
Similar to systems like Gabriel [11], or DARE [16], CogStream
provides a backend for serving AI models, and abstractions to access
them. The selection of an appropriate AI model, the negotiation
of the model parameters, and the data stream, are abstracted into
the CogStream protocol. The CogStream client and server initiate
a connection through a handshake, where the client communicates
the type of data it will send (e.g., a video stream and its resolution),
as well as the AI model it wants to use (e.g., detecting faces and
their emotions). Based on this information, the server dynamically
chooses the parameters to optimize the stream for the input of the
selected AI model, such as the frame size, color space, and whether
the client should do the frame transformation. This is orthogonal to
the protocol presented in [16], that dynamically adapts the framerate
to meet quality of experience (QoE) requirements. CogStream oper-
ates in highly mobile environments, where wearable devices connect
to edge nodes for short periods of time, and the handoff between
nodes is managed by the system. This requires active connection
management, which is handled by the connection manager as shown
in Figure 3. Deploying models to the appropriate edge nodes is
handled by the orchestration mechanism of the runtime.

4.2.4 Resource Management and Dynamic Provisioning
Many applications require personalized or domain-specific AI mod-
els that should be deployed to edge nodes based on the physical
context they operate in [22]. For example, an application for a retail
scenario may use an object detector that is trained on different data
than say, an application that targets museums. Moreover, due to
the limited resource of edge nodes, the platform needs to employ
efficient resource management techniques to deploy and evict appli-
cation services based on current demand. To that end, our platform
uses advanced container scheduling techniques that make precise
placement decisions in edge infrastructure scenarios [24].

5 PROTOTYPES AND EXPERIMENTAL RESULTS

This section presents selected aspects of the platform that we have
implemented so far, and preliminary feasibility experiments.

5.1 Platform Client SDK
Much of the system’s interaction is event-based and asynchronous
by nature. Our SDK appropriately enables a reactive programming
style. The following example shows how a C# script attached to a
Unity object could subscribe to CPOP updates to receive tracking
data on cars and cyclists within a 100m radius, and get their positions,
bounding boxes, and the object class label. The event handler lambda
is called asynchronously when new CPOP data is available.

// define CPOP query parameters and request features

var query = new Cpop.Query(["cars", "cyclists"], "100m");

var features = ["bbox", "label"];

Cpop.Subscribe(query, features , (cpopObj) => {

cpopObj.ObjectId; // tracks the object’s identity

cpopObj.Position; // global position

cpopObj.Features["label"]; // e.g., "car"

cpopObj.Features["bbox"]; // the current bounding

// ... code to react to data update

});

Listing 1: Asynchronously reacting to objects tracked by CPOP

5.2 Cloud-Based vs. Edge-Based Offloading
We demonstrate the problems of using cloud-based AI services
for interactive systems. Our results corroborate existing findings
on cloud vs. edge-based offloading [9, 11, 26]. As a representative
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Figure 5: Framerate of our object tracking prototype on Jetson devices

cloud service, we use an object detector of Azure Cognitive Services,
deployed in the closest Azure region. The service exposes an HTTP
endpoint that receives an image, and returns the detected objects and
their bounding boxes. We run the experiment once from a mobile
phone using an LTE internet provider, and once from a desktop PC
that is connected via fiber to the Internet. We invoke the API 400
times with a 416x416 pixel image, which is the common input size
for YOLO. For the edge-based scenario, we use a mobile device that
is connected via WiFi to a Jetson Xavier NX that hosts the service.
For a fair comparison, we wrap our object detector as an HTTP
service, and invoke it in the same way. Figure 4 shows the request
response time for the three scenarios. The mean response times are
1116 ms (Azure via LTE), 678 ms (Azure via cable), and 146 ms
(Edge device via WiFi). We found that the Xavier can serve up to
three instances of the model concurrently without any degradation,
demonstrating how a single computer can serve multiple tenants.

5.3 CPOP Prototype and Performance
We have implemented a prototype for the object tracking component
of CPOP in Python. The prototype uses a PyTorch implementation
of YOLOv5s for object detection, and the depth estimation model
of Bian et al. [6] trained on a surveillance camera dataset. Figure 5
shows the performance results of running the models on both an
NVIDIA Jetson Xavier NX, and an NVIDIA Jetson Nano. We found
that the Xavier device can run both models in parallel without any
performance degradation. The results demonstrate the feasibility of
running our object tracking method on edge nodes for interactive
applications. Currently, the bottleneck is the object detection with
13 FPS. However, a TensorRT C++ implementation and a smaller
input size can improve the framerate by up to a factor of 3.

6 SUMMARY AND CONCLUSION

General-purpose wearable AR devices are currently a key technol-
ogy for cognitive augmentation. To enable interesting applications,
devices need access to environmental sensor data, and the ability
to perform compute-intensive AI tasks. While AI accelerators for
some workloads will likely be provided on the device once a com-
mon set of use cases appears, there is still a need to offload tasks
to proximate computing resources. Edge computing and smart city
infrastructure is a logical step in this technological development.
Our platform CognitiveAR enables cognitive assistance applications
by abstracting this complex new computing environment, and pro-
viding functionality common across applications. Our preliminary
experiments show the necessity for edge computing solutions for
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interactive applications. Moreover, we demonstrated the feasibility
of tracking the position of physical objects using monocular cameras
and compact edge computers that can be mounted on, for example,
lamp posts in the city. We are working on a full end-to-end imple-
mentation of our platform, and using it to implement the example
applications that we discussed.
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[14] K. Krösl, H. Steinlechner, J. Donabauer, D. Cornel, and J. Waser.
Master of disaster. In The 17th International Conference on Virtual-
Reality Continuum and its Applications in Industry, pp. 1–2, 2019.

[15] C. Kumar B., R. Punitha, and Mohana. Yolov3 and yolov4: Multiple ob-
ject detection for surveillance applications. In 2020 Third International
Conference on Smart Systems and Inventive Technology (ICSSIT), pp.
1316–1321, 2020. doi: 10.1109/ICSSIT48917.2020.9214094

[16] Q. Liu and T. Han. Dare: Dynamic adaptive mobile augmented reality
with edge computing. In 2018 IEEE 26th International Conference on
Network Protocols (ICNP), pp. 1–11. IEEE, 2018.

[17] T. Metzler and K. Shea. Cognitive products: Definition and framework.
In 11th International Design Conference DESIGN 2010, 2010.

[18] NVIDIA. NVIDIA Jetson - the AI platform for autonomous
machines. Online. https://developer.nvidia.com/embedded/
develop/hardware.

[19] H. B. Pasandi and T. Nadeem. CONVINCE: collaborative cross-camera
video analytics at the edge. In 2020 IEEE International Conference
on Pervasive Computing and Communications Workshops, PerCom
Workshops 2020, Austin, TX, USA, March 23-27, 2020, pp. 1–5. IEEE,
2020. doi: 10.1109/PerComWorkshops48775.2020.9156251

[20] G. Premsankar, M. Di Francesco, and T. Taleb. Edge computing for
the internet of things: A case study. IEEE Internet of Things Journal,
5(2):1275–1284, 2018. doi: 10.1109/JIOT.2018.2805263

[21] T. Rausch and S. Dustdar. Edge intelligence: The convergence of
humans, things, and ai. In 2019 IEEE International Conference on
Cloud Engineering (IC2E), pp. 86–96. IEEE, 2019.

[22] T. Rausch, W. Hummer, V. Muthusamy, A. Rashed, and S. Dustdar.
Towards a serverless platform for edge AI. In 2nd USENIX Workshop
on Hot Topics in Edge Computing (HotEdge 19), 2019.

[23] T. Rausch, S. Nastic, and S. Dustdar. Emma: Distributed qos-aware
mqtt middleware for edge computing applications. In 2018 IEEE
International Conference on Cloud Engineering (IC2E), 2018.

[24] T. Rausch, A. Rashed, and S. Dustdar. Optimized container schedul-
ing for data-intensive serverless edge computing. Future Generation
Computer Systems, 114:259–271, 2021.

[25] J. Ren, Y. He, G. Huang, G. Yu, Y. Cai, and Z. Zhang. An edge-
computing based architecture for mobile augmented reality. IEEE
Network, 33(4):162–169, 2019.

[26] M. Satyanarayanan. The emergence of edge computing. Computer,
50(1):30–39, 2017.

[27] M. Satyanarayanan and N. Davies. Augmenting cognition through
edge computing. Computer, 52(7):37–46, 2019.

[28] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha,
W. Hu, and B. Amos. Edge analytics in the internet of things. IEEE
Pervasive Computing, 14(2):24–31, 2015.

[29] R. Schubert, E. Richter, and G. Wanielik. Comparison and evalua-
tion of advanced motion models for vehicle tracking. In 2008 11th
international conference on information fusion, pp. 1–6. IEEE, 2008.

[30] Y. Sermet and I. Demir. Flood action vr: A virtual reality framework
for disaster awareness and emergency response training. In Proceed-
ings of the International Conference on Modeling, Simulation and
Visualization Methods, pp. 65–68. CSREA Press, 2018.

[31] W. Shi and S. Dustdar. The promise of edge computing. Computer,
49(5):78–81, 2016.

[32] J. Simonjan. Towards large-scale pervasive smart camera networks.
In 2015 IEEE International Conference on Pervasive Computing and
Communication Workshops (PerCom Workshops), 2015.

[33] F. Van Diggelen and P. Enge. The world’s first gps mooc and worldwide
laboratory using smartphones. In Proceedings of the 28th international
technical meeting of the satellite division of the institute of navigation
(ION GNSS+ 2015), pp. 361–369, 2015.

[34] J. Wang, Z. Feng, S. George, R. Iyengar, P. Pillai, and M. Satya-
narayanan. Towards scalable edge-native applications. In Proceedings
of the 4th ACM/IEEE Symposium on Edge Computing, 2019.

[35] J. Waser, A. Konev, and D. Cornel. On-the-fly decision support in flood
management. GIM International, issue Nov/Dec:22–25, 2018.

[36] S. White and S. Feiner. SiteLens: Situated visualization techniques for
urban site visits. In Proceedings of the SIGCHI conference on human
factors in computing systems, pp. 1117–1120, 2009.

[37] S. Wu, Y. Fan, S. Zheng, and H. Yang. Object tracking based on orb
and temporal-spacial constraint. In 2012 IEEE Fifth International
Conference on Advanced Computational Intelligence (ICACI), pp. 597–
600, 2012. doi: 10.1109/ICACI.2012.6463235

[38] C. Zhao, Q. Sun, C. Zhang, Y. Tang, and F. Qian. Monocular depth
estimation based on deep learning: An overview. Science China Tech-
nological Sciences, 63(9):1612–1627, Jun 2020.

6

https://www.bbc.com/future/bespoke/made-on-earth/the-great-bicycle-boom-of-2020.html
https://www.bbc.com/future/bespoke/made-on-earth/the-great-bicycle-boom-of-2020.html
https://www.bbc.com/future/bespoke/made-on-earth/the-great-bicycle-boom-of-2020.html
http://trainingfordisastermanagement.com
http://trainingfordisastermanagement.com
https://developer.nvidia.com/embedded/develop/hardware
https://developer.nvidia.com/embedded/develop/hardware

	Introduction
	Urban Cognitive Assistance Applications
	Application Scenarios
	Summary of Requirements

	Related Work
	CognitiveAR: A Platform for Smart City-Scale Cognitive Assistance
	System Overview
	Runtime Platform
	Edge Nodes
	Platform Client
	AR App

	Platform Mechanisms
	Cyber-Physical Object Positioning (CPOP)
	Low-latency Device Communication
	CogStream AI Analytics System
	Resource Management and Dynamic Provisioning


	Prototypes and Experimental Results
	Platform Client SDK
	Cloud-Based vs. Edge-Based Offloading
	CPOP Prototype and Performance

	Summary and Conclusion

