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Abstract: The importance of high-resolution meteorological time-series data for detection of trans-
formative changes in the climate system is unparalleled. These data sequences allow for a com-
prehensive study of natural and forced evolution of warming and cooling tendencies, recognition
of distinct structural changes, and periodic behaviors, among other things. Such inquiries call for
applications of cutting-edge analytical tools with powerful computational capabilities. In this regard,
we documented the application potential of visual analytics (VA) for climate change detection in
meteorological time-series data. We focused our study on long- and short-term past-to-current
meteorological data of three Central European cities (i.e., Vienna, Munich, and Zürich), delivered
in different temporal intervals (i.e., monthly, hourly). Our aim was not only to identify the related
transformative changes, but also to assert the degree of climate change signal that can be derived
given the varying granularity of the underlying data. As such, coarse data granularity mostly offered
insights on general trends and distributions, whereby a finer granularity provided insights on the
frequency of occurrence, respective duration, and positioning of certain events in time. However,
by harnessing the power of VA, one could easily overcome these limitations and go beyond the
basic observations.

Keywords: climate change; meteorological time-series; global warming; visual analytics; visual
computing

1. Introduction
1.1. Background

The unprecedented global increase in the frequency and magnitude of extreme weather
events and related consequences (e.g., heat waves, flooding and drought, severe storms,
wildfires) is being recognized as one of the most pressing environmental issues and a
worldwide health and lifestyle concern. The synthesis reports published by the Intergov-
ernmental Panel on Climate Change (IPCC) confirmed that these observed transformative
changes in climate system are closely tied to the anthropogenic processes and related
elevated emissions of greenhouse gases (GHG) in the Earth’s atmosphere [1,2]. It is a
well-documented fact that GHG such as water vapor, carbon dioxide (CO2), methane
(CH4), nitrous oxide, which occur naturally in the atmosphere, along with the synthetic
fluorinated gases, which originate from a variety of industrial processes, have the tendency
to absorb, store and reradiate long-wave radiation emitted from Earth’s surface back to
Earth’s surface [3,4]. The effect is generally known as the ‘greenhouse effect’ and has a
significant impact on energy budget of the Earth system, resulting in global atmospheric
warming and chaotic weather patterns worldwide [3]. The global character of this phe-
nomenon is mainly driven by the fact that Earth’s atmosphere intermixes globally, meaning
that this phenomenon is of no geographical or spatial specificity. However, the degree to
which this drives site-specific environmental issues, such as the air, water and soil pollution,
alongside the occurrence of landslides, fluvial flooding, wildfires in forest landscapes, to
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name a few, depends on the levels of local GHG emissions, which tend to further amplify
the global effect [5].

Given these far-reaching negative impacts of GHG on climate dynamics, atmospheric
composition and natural and human environment, numerous national adaptation strategies
are set in motion in order to promote global transformation towards a climate-neutral,
primarily a low-carbon, economy [6]. These strategies and their unique goals build upon
a landmark environmental agreement reached between parties to the UNFCCC (United
Nations Framework Convention on Climate Change) to combat climate change and its
negative impacts, which is known as the Paris Agreement [7]. The Paris Agreement’s
central aim relates to combined efforts to limit the global temperature rise to 2 degrees
Celsius above preindustrial levels, while preferably targeting a threshold of 1.5 degrees
Celsius, which is to be achieved in this century. However, even with a strong commitment
by countries to make substantial and consistent reductions in climate forcing emissions,
whereby the envisioned mitigation measures are already being applied worldwide, the
effects of these measures drive a rather slow response in the evolution of climate change
due to inherent climate inertia and internal variability [8,9].

It is thus clear that a systematic and continuous monitoring of climate system and
related developments and trends is an essential prerequisite in understanding mitigation
progress achieved so far, but also in detecting the degree of natural progression of climate
change and respective implications for meteorological parameters. The present manuscript
and related research tackles the latter aspects. More specifically, we approach climate
change investigation by means of visual analytics of diverse meteorological time-series
datasets. This mainly relates to discovery of hidden insights by interactive visualization
and visual data mining [10].

1.2. Time-Series Analysis

The importance of meteorological time-series data for climate research is unparal-
leled [11]. These high-resolution temporal data sequences (e.g., minute-based, hourly,
daily) allow for systematic detection of nonlinear dynamics, abrupt changes in sequential
distributions, events and anomaly detection in a system over time. This facilitates, among
other aspects, the identification of diverging trends, periodic behaviors, discrepancies in
peak values and daily amplitudes. Such insights are critical when dealing with multivari-
ate meteorological time-series, whereby distinct structural changes in a single parameter
may drive an immediate or a delayed response in other parameters. These are known
as interdependencies or inter-relationships between several parameters, which are often
complex, non-linear, and non-uniform.

Such intricate inquiries call for applications of progressive analytical tools and tech-
niques that go beyond conventional methods used to describe only the basic features of the
underlying data (e.g., descriptive statistics). One promising approach relates to application
of visual analytics (VA)—a cutting-edge analytical system of advanced computational
capabilities powered by interactive and highly responsive visual representations [12]. Es-
sentially, VA systems deliver innovative data foraging schemes and data transformation
concepts capable of supporting multidimensional, multivariate, and often-ambiguous data
queries applied to multifaceted data streams. This is facilitated by the pre-built interactive
dashboards composed of interlinked analytical view ensembles, each enriched with a suite
of robust statistical transformative techniques. Through such visual data exploration and
visual data mining, VA enables the process of identifying hidden patterns, features, and
phenomena that would otherwise not be easily recognized by standard algorithmic means.

In the context of meteorological time-series analysis, VA could in principle help
determine the ongoing progression of warming tendencies under the climate change, the
degree of stability or instability of a system, the frequency of extreme events, or develop
new predictive schemes. However, even with such valuable application potentials, the
actual adoption of VA practices in climate research is still fragmented.
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1.3. Overview

Given this background, we aim to demonstrate how a VA approach can assist in
climate change detection, illustrated through a systematic analysis of meteorological time-
series data. We look into several past-to-current meteorological datasets delivered in
different temporal intervals (i.e., monthly, hourly). Specifically, we focus on long-term
(45 years) and short-term (5 years) timespans to assert the degree of climate change signal
that can be derived given the varying temporal scale of the underlying data.

The selection of this particular long-term time span was driven by the fact that, when
focusing on climate investigations, the data records of at least 30 years are considered
appropriate to fully capture the variability of climate conditions and their tendencies. The
selection of short-term time span was in part driven by the initial findings derived from
the long-term records, stressing that the last 7 years show notable and consistent warming
tendencies (see Section 3.1). This was further reduced to 5 years due to the data availability
stemming from selected weather stations.

2. Materials and Methods

Given that the majority of the global population currently resides in urban areas [13],
the general well-being and quality of life of urban societies is becoming increasingly
important. Led by this notion, we narrowed our research focus to the progression rate
of warming trends and changes in climate dynamics in urban areas. Specifically, we
selected three high-density traffic-intensive cities from the Central European region (i.e.,
Vienna, Munich, and Zürich) that are of the same Köppen climate classification (Cfb—
temperate oceanic climate) [14]. This allowed us to have more controlled background
climate conditions and respective urban influences (e.g., degree of urbanization, traffic
levels, population density). In general, Cfb designation denotes cool winters and warm
summers, with typically lacking dry seasons as precipitation is more evenly dispersed
throughout the year [15]. The selected cities also vary in size. It should be noted that we
are not aiming at comparative analysis of these cities. Rather, our additional objective is to
show that, independent of their size, cities are equally affected by climate change.

2.1. Data Sources and Study Parameters

The high-resolution (monthly, hourly) data records originate from several international
open data initiatives managed by national meteorological services, in the case of Vienna
and Munich, and city authorities, in the case of Zürich [16–18]. Respective weather station
names and locations are the following: Hohe Warte (48.2490560◦, 016.3556230◦) for Vi-
enna, München-Stadt (48.1406109◦, 011.5496953◦) for Munich, Schimmelstrasse (47.3710000◦,
008.5235000◦) for Zürich.

Long-term datasets represent 45 years of monthly records (from 1975 to the end of
2020). Short-term datasets represent 5 years of hourly records (from 2016 to the end of 2020).
It was noted that not all the cities offer the same set of publicly available parameters (e.g.,
air temperature, humidity, solar radiation, wind). Thus, the first step was to cross-reference
the available data parameters and find those that are present in each dataset. This was not
seen as problematic as the result of our cross-reference analysis revealed an adequate pool
of relevant common parameters. In the case of long-term monthly data, we reduced the
focus on those parameters that are known to influence the properties of the climate system.
These are referred to as atmospheric parameters and relate, in our case, to air temperature,
precipitation, and solar radiation. In the case of short-term hourly data, we focused on air
temperature, relative humidity, and wind speed, as these are more representative of local
microclimate conditions that are more suitable for a short-term analysis. Table 1 provides
an overview of selected parameters and respective aggregation levels and units. It should
be noted, however, that the wind speed data was provided in both km/h (Vienna) and m/s
(Munich, Zürich) units, which was accordingly converted to m/s, but also that this data
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was collected from different heights. Thus, we used the power law to estimate the wind
speed at a uniform height of 10 m above the ground (at the urban boundary level) [19,20]:

υ/υn = (H/Hn)α, (1)

here, υ is the wind speed at target height of 10 m (denoted by H), υn is the wind speed at
height Hn (height of the observation), and α is the friction coefficient (power-law exponent),
which is equal to 0.40 for high-density urban areas. The respective observation heights
(Hn) are 35 m for Vienna, 29 m for Munich, and 7 m for Zürich.

Table 1. Overview of selected parameters for long-term and short-term analysis.

Long-Term Parameters Description

Air temperature Monthly average, absolute maximum, and absolute minimum of daily temperatures in 2 m height [◦C]
Precipitation Monthly sum of total precipitation height [mm]

Solar radiation Monthly sum of sunshine duration [h]

Short-Term Parameters Description

Air temperature Hourly temperature records in 2 m height [◦C]
Relative humidity Hourly humidity records in 2 m height [%]

Wind speed Mean hourly wind speed [m/s, km/h]

2.2. Visual Analytics System

The VA system used for the analysis is an analytical ensemble solution developed at
our institution, specifically designed for interactive visual exploration of multi- and high-
dimensional time-series data, including categorical and functional data. These analytical
cockpits are composed of several individual interlinked computational modules, each
equipped with different built-in analytical technique for data processing. They support
specific tasks such as the data quality assessment (missing values, duplicate timestamps,
time gaps, and anomalies), detecting a value threshold breach, but also pattern search and
predictive model generation [21]. Additionally, several user-defined time- or event-based
filters and additional calculations can be made, allowing the end users to perform ad-hoc
queries and analyze the underlying data and key performance metrics. Our system offers
an extremely responsive design, achieved through a multi-threaded architecture, allowing
instantaneous feedback and smooth interaction with the data across diverse set of analytical
cockpits. This means that, once a user selects a data point or a data subset of interest in one
analytical module, the corresponding data points are highlighted in another module (see,
for example, Figure 1). As these analytical cockpits provide an instant comparison between
large sets of data, the process of identification of general temporal behaviors, outliers, and
any deviations can be done with little effort. Such inquiries namely relate to the detection
of unusual distributions, peak and null values, discrepancies, and general data noise. These
are essential for studying complex multivariate systems, such as the climate system.

2.3. Missing Data

Prior to the actual analysis, the raw data was structured to meet the data format
requirements of the VA system described above. During this process, it was noted that
some timestamps were missing in both long- and short-term datasets for all three cities
(less than 1% of the data for each parameter). This was adjusted using a custom script for
filling gaps in a temporal sequence, which was written in R programming language. These
fields are left empty, so as to retain the data integrity. Table 2 provides an overview of the
missing instances in all datasets.
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Figure 1. Composite view of temperature time-series (average and maximum values): heatmap view (up), time-series
distribution (down left), frequency distribution (down right).

Table 2. Total number of missing timestamps (number of hours) in the data for each parameter.

Long-Term Parameters Vienna Munich Zürich

Air temperature - - -
Precipitation - - -

Solar radiation - 1 of 552 h -

Short-Term Parameters

Air temperature 265 of 43,848 h 24 of 43,848 h 405 of 43,848 h
Relative humidity 264 of 43,848 h 27 of 43,848 h 405 of 43,848 h

Wind speed 262 of 43,848 h 34 of 43,848 h 390 of 43,848 h

3. Results and Discussion
3.1. Long-Term Analysis

Going through the rather coarse level of acquired long-term data (i.e., monthly), we
soon realized that by relying on such coarse granularity and conventional analysis methods
(e.g., descriptive statistics, value change over time) one could only gain insights that point
to the general trends and distributions. However, by using a VA approach we could
effectively leverage these issues by going beyond such initial observations.

To exemplify, we investigated temporal changes using a time-based distribution
enriched with a heatmap view and frequency distribution of each parameter and for
each city (Figures 1 and 2). Figure 1 illustrates distribution of average and maximum
temperatures. Figure 2 illustrates distribution of minimum temperature. Due to several
initial observations described below, we further compared a reference timespan of last
5 years (2016–2020) to the rest of the dataset (1975–2016), in an effort to highlight the abrupt
changes in the recent years when compared to the 30 years past. This is distinctly colored
in shades of blue in Time-Series view in Figures 1 and 2.

Firstly, we can see a clear and consistent upward trend in temperature values present
on all aggregation levels (i.e., average, minimum, maximum). This is best observed in
the heatmap view, where the white-to-red color scheme illustrates the annual progression,
with red denoting the highest value. In the case of the observed cities, the average tem-
perature rose by approximately 1.5 to 2 ◦C, while the Tmax reached a difference of up to
5 ◦C, observed from the 1975 reference line. This is consistent with the current scientific
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consensus stating that the Earth’s climate is experiencing a rapid warming [22]. It should
be noted that a part of the observed warming might indeed be attributed to climate change.
However, a certain degree of this warming may be driven by the contextual urban factors,
such as the degree of local urbanization and population density, traffic levels, density of
urban structure, etc. We further noted that the Tmin was equally affected by the noted
warming, whereby this trend was even more progressive. The respective temperature
deviation (2020 vs. 1975) ranges from 5 to 13 ◦C between the observed cities.

Figure 2. Composite view of temperature time-series (minimum values): heatmap view (up), time-series distribution
(down left), frequency distribution (down right).

Secondly, from the frequency distribution graph (Figure 1, down right) we can see
that the temperatures exceeding 35 ◦C are more prominent in the last 5 years and that all
of such instances are clustered in the last 15 years (highlighted in the Time-Series view).
Specifically, these particular insights are made possible by the inherent interactivity of the
used VA system, allowing users to select data points or areas of interest in one view and
get an instant visual response in another. In our case, by selecting the bars raging from
35 ◦C and above in the Histogram view in Figure 1, this reveals when exactly did such
conditions occur in the Time-Series view. Similarly, looking at the Tmin we can see that the
temperatures below −10 are rarely occurring in the last 5 years and almost not at all in the
last 2 years (Figure 2, down right). Looking at the temporal scale, we can see that most of
these changes happened in the last 5 to 7 years for all cities. This further indicates that we
are already in a warming period that is further evolving. This can be additionally supported
by a threshold breach assessment analysis carried out using a specific functionality of the
deployed VA system (Figure 3). We specifically looked at the frequency distribution of
those instances where a single temperature value breached the predefined lower (−5 ◦C)
or upper (30 ◦C) temperature thresholds. These thresholds denote the periods of increased
heat or cold stress, following the principles of a universal thermal comfort index called the
universal thermal climate index (UTCI) [23]. We can clearly observe a steady progression
of higher and a decline of lower thresholds breaches.

Interestingly enough, the solar radiation data revealed a steady increase of solar hours
compared to the 1975 (Figure 4, above). The respective increase (2020 vs. 1975) was 316 h
for Vienna, 384 h for Munich, and 578 h for Zürich. This increase was present in all meteoro-
logical seasons, being the most prominent during the periods of meteorological spring and
summer. Together with the precipitation results showing a slight upward trend (Figure 4,
below), the following assumption can be made: we are currently experiencing a dry period
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with longer sunshine duration and more likely occurrence of sudden precipitation events
(i.e., heavy rain events).

Figure 3. Threshold breach assessment of temperature time-series (minimum and maximum values).

Figure 4. Composite view of solar (above) and precipitation (below) time-series: heatmap view (up),
time-series distribution (down left), frequency distribution (down right).

3.2. Short-Term Analysis

In contrast to monthly observations, hourly records gave us several additional insights
on the frequency of occurrence, respective duration, and positioning of certain events in
time. We will first discuss the temperature findings, where we observed the 2020 conditions
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with reference to the rest of the dataset (i.e., 2020 vs. 2016–2019). The frequency distribution
of high temperature extremes in 2020 (Figure 5, right) was found to resemble the shape and
the height position of the 2016–2019 curve. This further supported our previous observation
regarding the evolving warming period. We thus focused more on the specifics of how Tmin
was affected by such developments. Looking at Figure 5 (frequency distribution view), we
can also notice that the 2020 annual temperature range appears to be notably smaller than
for the 2016–2019 period. This holds true for all the cities. Namely, in 2020, Tmin does not
exceed −4 ◦C, while in the previous years the absolute Tmin reached −10 ◦C. The records
also show a higher percentage of generally higher lower temperatures ranging from zero
to 10 ◦C, indicating a tendency towards generally warmer winters.

Figure 5. Composite view of comparative temperature time-series analysis with focus on temperature minima: heatmap
view (up), time-series distribution (down left), frequency distribution (down right).

We further investigated when in time the properties of temperature curves started to
change and how long such conditions lasted. We looked into the annual distribution of
diurnal duration of temperatures breaching a predefined threshold (30 ◦C for Tmax and
0 ◦C for Tmin) for each city and each year (Figures 6–8). These durations are expressed
in number of seconds in the day (maximum being 86,400). In these figures, the height of
lines indicates the respective duration, thus longer lines denote longer duration of hot or
cold conditions.

In the case of Tmax (Figures 6–8, above), we could not find a stable regularity, just
several apparent trends. As such, there is an apparent trend for temperature extremes
(above 30 ◦C) to be of longer diurnal duration and to start earlier in the year, observed from
the 2016 base line. For example, for the month of June, an absolute diurnal Tmax duration
increase (2019 vs. 2016) of around 3.5 h was noted for Zürich, 4 h for Munich, and 1.5 h for
Vienna. This further insinuates the potential development of tropical nights in summer
months. However, in 2020, such extremes were recorded only from the month of July on.
This is namely due to the inherent irregular behavior of the climate system and a general
difficulty to anticipate sudden changes due to multivariate external forcing [24].

However, in the case of Tmin, the annual variations appeared to be more evident,
especially in the case of Zürich and Minuch (Figures 6–8, below). We noted an apparent
change in both duration and positioning of temperature minima. Specifically, the first
incidences of below zero temperatures are recorded later in the year for 2020 compared to
2016, their occurrence is rarer, and their diurnal duration generally decreased.
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Figure 6. Annual distribution and diurnal duration (expressed in seconds) of temperature breaching a predefined threshold
for Munich: temperature maxima (above), temperature minima (below).

Figure 7. Annual distribution and diurnal duration (expressed in seconds) of temperature breaching a predefined threshold
for Vienna: temperature maxima (above), temperature minima (below).

Figure 8. Annual distribution and diurnal duration (expressed in seconds) of temperature breaching a predefined threshold
for Zürich: temperature maxima (above), temperature minima (below).
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The associated multivariate pattern analysis offered a supporting study to the ob-
served behavioral change indications in meteorological data. Here we carried out the
analysis of paired instances of temperature, humidity, and wind data (Figures 9–11). For
this purpose, we investigated the annual progression of hot events by a paired comparison
of high temperature/low wind/low humidity events (i.e., Tmax > 30 ◦C, wind < 2 m/s,
humidity < 50%). The low temperature/high wind/high humidity events (i.e., Tmin < 0 ◦C,
wind > 5 m/s, humidity > 50%) were used to explore the progression of cold events. Again,
we can note a rather steady development of hot events throughout the observed years
(Figures 9–11, above). In some cases, such events tend to start earlier and end later in the
year, suggesting thus the longer periods of heat stress. In contrast, cold events seem to
be less frequent and their individual occurrence more spread out over time (Figures 9–11,
below). This further points to the possible seasonal shifting or loss of seasonality altogether.

Figure 9. Multivariate pattern analysis of paired parameters for Munich: hot events (above), cold events (below).

Figure 10. Multivariate pattern analysis of paired parameters for Vienna: hot events (above), cold events (below).
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Figure 11. Multivariate pattern analysis of paired parameters for Zürich: hot events (above), cold events (below).

4. Conclusions

We carried out a systematic analysis of long- and short-term past-to-current meteoro-
logical time-series data, collected from three Central European cities, to detect insinuations
of climate change in such datasets. As the underlying data were delivered in different
temporal intervals (i.e., monthly, hourly), we looked at what kinds of information can be
derived given such different levels of detail. To facilitate such inquiries, we used a visual
analytics (VA) approach to leverage the inherent limitations of conventional descriptive
statistics methods. In this, we aimed not only to highlight the overall benefits of VA in
general, but also its pivotal application potential in the context of climate research. In
our previous work [21], we directed attention to some promising benefits of using the VA
approach in the context of meteorological time-series analysis, although with a specific
focus on data structure and quality check analysis of diverse datasets, further applied
on a much smaller scale (i.e., only one year worth of data). In the present contribution,
we focused on how a visual data exploration may be used to detect climate change from
meteorological time-series datasets of varying resolutions.

The analysis of data with coarse granularity (i.e., monthly records) initially only
offered the insights on general trends and distributions. Specifically, we noted a clear
warming trend from the 1975 base line, whereby both temperature maxima and minima
shifted towards higher values. By further harnessing the power of VA, we could perform a
comparative analysis of a specific timespan (i.e., 2016–2020) with reference to the rest of
the dataset, along the distinct threshold breach assessment. This namely gave us a more
detailed understanding of the nature and degree of such warming, along the frequency
distribution of periods of increased heat and decreased cold stress. The majority of related
high-temperature events (exceeding 35 ◦C) seem to be more prominent in the last 5 to
7 years for all cities. In contrast, low temperature events (below −10 ◦C) seem to be
almost non-existent in the same reference timeframe. Solar and precipitation data further
suggested a more prominent dry period with potential increased frequency of heavy
rain events.

The analysis of data with fine granularity (i.e., hourly records), on the other hand,
offered insights on time-dependent feature variation in data structure (i.e., duration and
position of change events). We could see that the general warming trend is still evolving,
with a tendency of temperature extremes (above 30 ◦C) to start earlier in the year and last up
to 4 h longer during the day. This could also point to a likely development of tropical nights
in summer months. The multivariate analysis of paired parameters (temperature, humidity,
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wind) suggested a steady development of hot events and less frequent development of
cold events throughout the observed years. This allows us to assume a possibility of
seasonal shifting.

In conclusion, we can say that a VA approach, with its diverse semi-automated
analytical capabilities, serves as a powerful tool for detecting hidden nuances in massive
and multifaceted data streams, thus allowing for discovery of new relevant insights and
patterns. The integration of this interactive visualization science in climate research would
help scientist move forward from simple confirmatory to progressive exploratory data
analysis. Here, the former commonly relies on static graphical representations of derived
results, while latter pursues a continuous interaction with large and complex data for a
deep understanding of the full complexity and informed reasoning about the phenomena.
Such a visual data mining approach also provides the means of investigating the actual
development of processes and phenomena, instead of just the derived metrics.

5. Future Research Directions

The application potential of visual data exploration outlined in this paper is meant
to highlight the opportunities for novel approaches in climate research, which had not
previously been prominent in the practice. As such, our current study aimed to use such
progressive methods for detection of distinct changes in local climate depicted from raw
climate data acquired from urban areas.

However, we also recognize the highly beneficial aspect of detecting which contextual
urban factors (e.g., emission levels, degree of urbanization) and related mechanisms affect
the changes in the local climate the most. As this requires additional sources and types
of data (both numeric and categorical data), we are currently pursuing such holistic
investigations through our future research efforts.

Additionally, we also aim to focus on a comparative study of meteorological records
stemming from urban areas (as done in the present research) and surrounding open land
(rural) areas. This latter would allow us to isolate a clear climate change signal, deprived
from any anthropogenic influence on climate.
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the standard software packages. The authors further declare that they have no affiliation with or
involvement in the company Visplore GmbH, nor any financial, business, or personal interests, such
as honoraria, educational grants, consultancies, stock ownership, or patent-licensing arrangements,
regarding the software discussed in this manuscript.
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