
Agent Based Pedestrian
Simulation in Visdom

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Stefan Zaufl, BSc
Matrikelnummer 00925357

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Mitwirkung: Dipl.-Ing. Dr. Jürgen Waser

Wien, 27. November 2021
Stefan Zaufl Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Agent Based Pedestrian
Simulation in Visdom

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Stefan Zaufl, BSc
Registration Number 00925357

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Assistance: Dipl.-Ing. Dr. Jürgen Waser

Vienna, 27th November, 2021
Stefan Zaufl Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Stefan Zaufl, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 27. November 2021
Stefan Zaufl

v

Danksagung

Ich möchte mich bei Dr. Eduard Gröller und Dr. Jürgen Waser für die Beteuung der
Arbeit bedanken. Durch ihren Einsatz konnte die Qualität nochmals gesteigert werden.
Mein Dank geht auch an meinen Eltern und meinem Bruder, die mich immer unterstützt
haben. Weiters möchte ich mich bei meiner Freundin Melany Rieger bedanken, die mich
immer vorangetrieben hat.

Nicht zu vergessen sind außerdem die unglaublich netten Leute meiner Tanzgruppe, die
immer einen guten Ausgleich zur Arbeit und dem Schreiben dieser Ausarbeitung schaffen
konnten.

Zu guter Letzt möchte ich auch noch meinen Arbeiteiskollegen danken - insbesondere
Tanja Weiringer und Petra Halasz ohne die ich diese Arbeit wohl nie zu Ende gebracht
hätte.

vii

Acknowledgements

I would like to thank Dr. Eduard Gröller and Dr. Jürgen Waser for their supervision
and support. Because of their continued efforts the quality of this work was improved. I
would also like to thank my parents and my brother who always supported me. Thanks
are also due to my girlfriend Melany Rieger, who always pushed me beyond my comfort
zone.

We must not forget my dancing group which consists of extraordinary people and always
help in maintaining a healthy work-life balance.

Last but not least I would like to thank my colleagues - especially Tanja Weiringer and
Petra Halasz. Without them this work would still be unfinished.

ix

Kurzfassung

In dieser Arbeit wird eine neue Fußgängersimulation in Form eines Plugins für das Visdom
Visualisierungssystem präsentiert. Zuerst wird über die allgemeine Struktur einer solchen
Simulation gesprochen indem ein Schichtenansatz verfolgt wird. Unterschiedliche Kandi-
daten für die Schichten werden präsentiert und die am besten geeignetsten ausgewählt.
Für die taktische Schicht wurde ein Schnellster-Pfad Algorithmus ausgewählt und für
die operationale Schicht wurde eine modifizierte Version des ORCA (Optimal Reciprocal
Collision Avoidance) Algorithmus verwendet. Diese werden im Detail beleuchtet.

Außerdem wird die Visualisierung des Simulationszustandes erkärt. Es wird auf die unter-
schiedlichen Arten, auf die die Objekte der Simulation dargestellt werden, eingegangen,
sowie auf zusätzliche Visualisierungen, die dem/der BenutzerIn helfen sollen, tiefere
Einblicke in die Daten zu gewinnen.

Danach wird die konkrete Implementierung unter die Lupe genommen. Vor allem wie die
unterschiedlichen Schichten in der Visdom Application integriert sind.

Im letzten Kapitel werden die Resultate diskutiert. Zuerst wird das System mittels der
RiMEA Testfälle validiert. Danach werden mittels einer Studie eines Echtweltszenarios
die Fähigkeiten des Systems präsentiert.

xi

Abstract

In this thesis a new pedestrian simulation plugin for the Visdom visualization system is
presented. First the general layout of such a system is discussed using a layered system.
Different candidates for these layers are presented and the best fitting one for the use are
picked. For the tactical layer a fastest-path algorithm is used whilst for the operational
layer a modified ORCA (Optimal Reciprocal Collision Avoidance) algorithm has been
implemented. These will be discussed in detail.

We will also talk about the visualization of the simulation state. Both the kind of
representation for different objects in the world, as well as additional visualizations that
aim to help the operator to gain insight, are going to be presented.

Then the implementation itself is going to be discussed. Especially how the different
layers are integrated into the Visdom application.

In the last chapter the results are presented. First the system will be validated using
the RiMEA test cases and then a real world case study showcases the capabilities of the
proposed system.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation & Problem Statement . 1
1.2 Aim of the Work . 2
1.3 Methodological Approach . 2
1.4 Contributions . 3

2 Analysis of Existing Approaches 5
2.1 Pedestrian Simulation . 5
2.2 Visualizations of Agent Based Data . 11
2.3 Comparison and Summary of Existing Approaches 11

3 Agent Based Simulation for Evacuation 15
3.1 Overview . 15
3.2 The Operational Layer . 16
3.3 The Tactical Level . 29
3.4 Initial States and Boundary Conditions 37

4 Visualization and Interactive Simulation Control 41
4.1 Data Visualization . 41
4.2 Visualizations and Interactions in Visdom 47

5 Implementation 51
5.1 Visdom . 51
5.2 The Pedestrian Simulation Plugin . 56
5.3 The Data Flow Diagram of the Pedestrian Simulation 65

6 Validation and Case Studies 77
6.1 RiMEA Test Cases . 77

xv

6.2 Variations on the Tests . 80
6.3 Real World Case Study . 84
6.4 Performance . 89

7 Summary and Future Work 97
7.1 Summary . 97
7.2 Future Work . 98

List of Figures 101

List of Tables 105

List of Algorithms 107

Bibliography 109

CHAPTER 1
Introduction

1.1 Motivation & Problem Statement

The VRVis [vrv] is developing a scenario based decision support system in the envi-
ronmental and geospatial domain called Visdom [vis]. Currently this system supports
the simulation and visualization of river flooding and protection measures against that,
surface run-off in heavy rain, a sewer simulation that is coupled with the surface, and a
logistics simulation for setting up counter-measures. The main goal of this software is to
support decision makers by playing through different scenarios. The user can then make
an informed decision on actions that have to be taken. Because Visdom computes most
of their simulations on the Graphics Processing Unit (GPU), it is able to do these faster
than real-time, which enables it to be used in time-critical situations that require fast
actions.

To further enrich the utility, decision makers can draw from Visdom, an agent-based
pedestrian simulation should be added to the system. As the main focus of the system is
the disaster simulation, the pedestrian model should be an evacuation simulation. The
reason for this is that planning evacuations can also be important in a flooding event. If
for example the local hospital is endangered to be flooded, the software should provide
the tools for planning the evacuation of said building. It is also possible to plan for
disasters in outdoor events with this kind of simulation. A typical example for this would
be a festival with many people like the Donauinselfest in Vienna.

The overall goal of the work is to implement an agent based simulation that should
resemble reality as close as possible, yet run in real-time to enable decision makers to
respond to changes as fast as possible. Because the user has to make decisions based on
the outcome of the simulation, both the visualization of the result and the interactions
with the simulated world are important. As a result the interface should feature tools for
the user that help identifying dangerous regions in the simulated area, track the path of

1

1. Introduction

individual agents, investigate the flow of agents in a bottleneck and change the simulation
to discover other threats or solutions in dangerous situations.

1.2 Aim of the Work
The goal of this work is to create an agent based simulation. We have three main areas to
address: the simulation itself, the visualization, and the interactivity. The simulation of
pedestrians is not easy and still an ongoing research area. Because of this the first task has
to be the identification of a simulation model that adheres to the following constrains: It
has to be agent based, otherwise the user cannot follow the path of individual pedestrians.
It has to run faster than real-time otherwise the interactivity is not optimal and decisions
will be delayed. It should be stable, so agents may not pass through obstacles and small
changes in the world should not strongly affect the outcome of the simulation. It should
be reproduceable, multiple runs of the same simulation should yield the same result. And
finally it should mimic real-world crowd behavior as close as possible.

The methods that fulfill these requirements will be integrated in the Visdom software
as a plugin. Visdom features a branching time-line model [RWF+13] that the plugin
has to be compatible with. This model empowers the user to create alternative time-
lines by changing parameters in the simulation while keeping the prior configuration for
comparison. Parameters can range from numbers for the used models to adding walls, or
new pedestrians. This requires the plugin to support state serialization and loading. The
integration of the model will benefit the interactivity of the simulation as the user can
quickly change the simulated world and evaluate this change against the prior state.

The technical side of the result visualization will be managed by Visdom and the plugin
will use the system’s build-in tools to present the simulation data. Agents will be modeled
as glyphs to provide all necessary information while reducing visual noise that could
potentially distract the user. The glyphs should at least encode position, orientation,
and speed of the agent. The floor will also be used to display information such as density
or agent paths using a heat map. Walls and obstacles will be displayed and modeled as
lines to avoid occlusion problems. The world will be rendered in 3D, because agents may
also move vertically (e.g., walking up a small hill).

The central research question of this work is how does the combination of the Quickest
Path Model by Kretz et al. [KGH+11] and a variation of the ORCA Model by Curtis and
Manocha [CM14] perform? How is the computational performance of the combination of
these models and how well does this combination of models describe the reality?

1.3 Methodological Approach
The methodological approach consists of these steps:

1. Literature Study

2

1.4. Contributions

Gather information about existing models and visualizations and decide which ones
to use.

2. Implementation of the Plugin
The plugin has to be implemented using the gathered information.

3. Validation
The implemented plugin has to be tested and validated using:

a) RiMEA Test Cases [rim]
These test cases are used in Germany to validate pedestrian models.

b) Real World Study
Test the implementation based on a real-world scenario.

1.4 Contributions
The main contributions of this work are:

• The simulation of pedestrians as a combination of the Quickest Path Model by
Kretz et al. [KGH+11] and a variation of the ORCA Model by Curtis and Manocha
[CM14]

• Implementation for a scenario-based decision support system. This implies a very
strict state handling that is optimized for branching and switching between different
time-lines.

• Coupling with the flood and storm weather simulation via a danger domain

• Integrated on-the-fly visualization of relevant evacuation information to help identify
environmental hazards such as choke points and areas of high pedestrian density

• Validation of the simulation using the RiMEA test cases [rim]

• A real world large-scale case study of a concert evacuation

3

CHAPTER 2
Analysis of Existing Approaches

2.1 Pedestrian Simulation

We will use Hoogendoorn and Bovy’s [HB04] categorization of pedestrian simulations.
They use three levels: strategic, tactical and operational (see Fig. 2.1). The strategic
level makes high level decisions that have a destination as output, for example the goal
of buying a ticket at the nearest ticket station. The tactical level then takes care of
planning a route to the given destination and has a desired direction or a sub goal as
output. The operational level takes this and moves the agent. It makes sure that the
agent resolves collisions with other agents and does not pass through obstacles.

Though it is useful to have this categorization, not all systems implement all three levels

Strategic Layer

Tactical Layer

Operational Layer

 Destination

 Direction/Subgoal

Figure 2.1: The three layers of a pedestrian simulation according to Hoogendoorn and
Bovy’s [HB04] definition

5

2. Analysis of Existing Approaches

and they might spend more energy and afford on one level than on the others. For
example, a simulation of pedestrians crossing a street [FDCZ13] does not need to have a
strategic level, because the goal of the agent is predefined: it has to walk to the other
side of the street. The tactical level is very primitive as the desired velocity only points
in a fixed direction, as there are no static obstacles on a crosswalk. All of the complexity
is in the operational level.

2.1.1 Operational Level

The operational level executes the actual movement of the agent. It can host a variety
of different models, but we will structure them into three main categories: Cellular
Automata, Social Forces Models, and optimization techniques. There is also a fourth
category that we will not cover as it seems to have become less popular. It is called the
behavioral model where agents act on a predefined set of rules like in a state machine.

Cellular Automata

Cellular Automata divide the space into regular convex regions called "cells". A cell can
hold multiple pedestrians or just one, depending on the model. In case of the work of
Feng et al. [FDCZ13] a cell can hold only one agent, because they chose the grid size in
a way that only a single agent would fit into it space wise. In their simulation agents
cross a street (see Figure 2.2). The model for the locomotion is discrete so every agent
can move from one cell to another one, but cannot stand between cells. Pedestrians
choose, based on local information stored in the grid of cells, where to move next and
they are updated sequentially, one after another. In their work they encouraged agents
to form lanes by adding an attraction parameter that boosts the probability of an agent
following another one with the same target, but repels it from the other ones with a
different target - the side it started on.

Social Forces Models

The original version of the Social Forces Model ws created by Helbing and Molnár [HM95].
They suggest that the motion of pedestrians can be described as a physics based particle
simulation where the particles are subject to social forces. Multiple forces are applied to
the agent in each simulation step in order to compute the next position. These forces
can be simple like a force pointing in the direction of the desired target position or be
more complex like a force acting between agents - pushing or pulling it towards/away
from each other. They are also computed for each individual agent and do not have to
be symmetrical. For example when looking at agent A there might be a force pulling
agent A towards agent B and at the same time when looking at agent B there might be
a force that pushes agent B away from agent A. This is a very popular model as it is
highly customizeable and offers many parameters to customize it. Many variants of this
model have been published over the years.

6

2.1. Pedestrian Simulation

Figure 2.2: Simulated pedestrians (agents) on a grid. Pedestrians start from the top and
the bottom, trying to reach the other end. Figure by Feng et al. [FDCZ13]

Figure 2.3: Lane formation of agents using a social forces model. The radius of the circles
represent the velocity of the agents. Figure by Helbing and Molnár [HM95]

Optimization Techniques

Guy et al. presented PLEdstrian [GCC+10]. This method uses the Principle of Least
Effort (PLE) to simulate pedestrians more realistically than for example a shortest path
algorithm. A comparison of the operative model of PLEdestrian to the social forces
model can be seen in Figure 2.4. They defined an energy function that each agent wants
to minimize in order to maximize their comfort. This function drives the operative and
the tactical layer’s decisions. In the tactical layer they have a network with all possible
intermediate points between the agent and their goal and each edge of the network has
an energy value assigned to it. By using an A* algorithm they can determine the best
next sub-goal for the agent. In the operative layer they evaluate the continuous energy
function in the immediate neighborhood and look for the minimum there in order to
extract a few candidates for the velocity. In order to enable the algorithm to run in real

7

2. Analysis of Existing Approaches

Figure 2.4: Paths of two agents avoiding each other. Comparison between Helbing and
Molnár’s Social Forces Model (red path) and PLEdstrian (blue path). Figure by Guy et
al. [GCC+10]

Figure 2.5: 1000 agents trying to pass through the middle of the circle. Figure by Berg
et al. [VDBGLM11]

time they use a heuristic instead of the true minimum calculation.

Berg et al. developed a method for robots to move without colliding with each
other or their environment: Optimal Reciprocal n-Body Collision Avoidance (ORCA)
[VDBGLM11]. They use Velocity Obstacles (VO) [FS98] to judge if the agent is about
to collide with other ones. Using them they can extract a half-plane in velocity-space
for all other agents that represents a save zone for the current agent to pick its velocity.
These half-planes can be seen as a linear program where the goal is to stay as close as
possible to the desired velocity. This method has been adapted for pedestrian simulation
by applying a speed model that limits the maximum velocity of the agent by the density
[CM14]. See Figure 2.5 for an example.

2.1.2 Tactical Level

The tactical layer plans a path around static obstacles and creates subgoals for the
operational layer that can be reached by walking there in a straight line. These models
can be categorized into shortest path and quickest path methods.

Shortest Path

One way to find a valid path for an agent is to compute the shortest possible path. People
want to minimize their energy spent walking to maximize their comfort, so they naturally
seek for the shortest path. Most of these algorithms generate a weighted graph of the

8

2.1. Pedestrian Simulation

Figure 2.6: A visibility graph connecting the source and the destination. Figure by
Höcker et al. [HBK+10]

environment and use some sort of Dijkstra’s algorithm to extract the shortest path to
the destination.

The easiest method of generating such a graph discretizes the space into regular convex
polygons [BT00] - the most popular one is the square. A cell can be blocked (by an
obstacle or a wall) or empty so agents may pass through it. The navigation graph is
implicitly given by the structure of the discretization: each cell is a node and neighboring
cells are connected if none of the two is blocked. These graphs work well if all obstacles
can be optimally described in these grids and agents always walk perfectly aligned to the
grid. Otherwise the space discretization creates visible artifacts. For example, when using
squares agents tend to walk in zig-zag patterns when they should move diagonally. The
algorithm is very easy to implement and can be extended to overcome most shortcomings
(like casting rays on diagonals to find out if the direct path is free).

A visibility graph (see Figure 2.6) takes a set of obstacles and creates nodes at the corners
of them [HBK+10]. Then all nodes are connected, except for those that are not mutually
visible by each other. The resulting navigation graph leads the agents around the corners
of the obstacles. This method works very well at low agent densities, but at higher
densities agents tend to pile up before a corner, because all of them want to pass as
close by the corner as possible. This is due to the fact that shortest path algorithms are
designed for a single agent.

Quickest Path

Another way to think about this problem is to change the optimized value: instead of
optimizing for the shortest path, we optimize for one that takes the least amount of
time to walk - the quickest path. Calculating the actually quickest path does not reflect
human behavior as we make mistakes due to incomplete information. The goal must be
to create an accurate model of the estimated quickest path that humans use.

A possible way to achieve this is by using a dynamic distance field [KGH+11] (see

9

2. Analysis of Existing Approaches

(a) A dynamic distance field based on a grid. Figure by Kretz
et al. [KGH+11]

(b) A render of the scene. Figure by Kretz et al. [KGH+11]

Figure 2.7: Quickest path model. Figures by Kretz et al. [KGH+11]

Figure 2.7). This method divides the walk-able space into a regular quadratic grid where
each cell stores the current agent density and the estimated distance to the destination.
The negative gradient of the distance field is used to extract the direction in which a
pedestrian should move when standing on this cell. There are at least two distance fields:
a static distance field that never changes throughout the simulation as it does not include
any agents and a dynamic distance field that is updated in each step. The static field just
includes the real distance from each cell to the destination and is computed by solving
the Eikonal Equation for the field. The dynamic field takes the static field as a basis, but
also factors in the agent densities of the cells. This allows it to estimate a lower speed
for these cells effectively pushing the goal further away on this path. The algorithm is
not perfect as it can only react to a congestion rather than avoiding it in advance.

Kretz et al. [KLH14] tried to address this problem by changing several things. First
they were using a sparse graph that provides meaningful alternative routes for avoiding
obstacles and congestion. This graph is generated using distance maps and obstacle

10

2.2. Visualizations of Agent Based Data

analysis. A graph generated that way differs from a simple visibility graph as it also
places additional nodes in empty spaces to provide extra choice. Second they try to
create a so-called "User-Equilibrium": the pedestrians should choose their paths in such
a manner that the pedestrian density is as low as possible and simultaneously have the
shortest possible traveling time. This is only achievable with an iterative approach as a
non-iterative never always finds the best solution - it only finds good solutions. Iterative
means that they have to compute the whole simulation multiple times to find paths with
these low-density, quick paths.

2.2 Visualizations of Agent Based Data
Faninil and Calori [FC14] presented a system that can take either simulation or tracking
data (measurements) and visualize it. The system aims at presenting the data in a
realistic way, so for visualization 3D-models of the buildings and pedestrians can be
used. Besides the realistic rendering, a statistical module is also provided in the system
that is capable of rendering lines for each pedestrian in order to visualize their path.
Additionally these paths can be colored so the color represents the density of pedestrians
at a particular point on the path - like a heat map does. Another interesting visualization
the system is providing is a 3D density graph that gets drawn directly on top of the
street. So the horizontal axes are the 2D-location in the world and the up-axis represents
the density of the pedestrians at this particular point in space. An example can be seen
in figure 2.8.

Handel1 et al. [HGPA15] also created a system that offers similar features to the prior
presented system: it also takes already existing data of pedestrian positions and visualizes
them in a realistic way. However, only one statistical analysis method is provided: a
heat-map that shows the density of the pedestrians (see Figure 2.9). It is computed by
counting the number of pedestrians in a cell and normalizing it by the total number of
pedestrians in a scene. The authors point out that a coarse grid works best with this
kind of measurement.

Guo et al. [GWY+11] presented a visualization system that lets the user explore the
behavior of cars, cyclists, pedestrians, and public transportation vehicles at a single
crossing. It features multiple views: a stylized 2D representation of the crossing, a theme
river showing the amount of traffic for each type and time, scatterplots and a parallel
coordinate plot showing multi-dimensional data about the crossing. These views are
linked to each other during brushing or selecting. The system enables the user to identify
dangerous situations and analyze the cause.

2.3 Comparison and Summary of Existing Approaches
In this chapter we discussed existing methods for simulating pedestrians and how to
visualize the generated data. Each of the discussed approaches has its flaws and benefits,
there is no best solution that suits all cases perfectly. Cellular Automata are very well

11

2. Analysis of Existing Approaches

Figure 2.8: Fanini1 and Calori’s [FC14] simulation system rendering. On the top: real-
time overlay of the pedestrian’s paths colored by density like a heat map. On the bottom:
the 3D density graph of the pedestrians.

Figure 2.9: The density of agents is visualized by the color of the floor. Figure by Handel1
et al. [HGPA15]

12

2.3. Comparison and Summary of Existing Approaches

suited for large-scale simulations as they are very fast, but the separation of the world
into discrete positions does not reflect the reality accurately. Social Forces models do not
have this drawback, but have very many parameters that need to be adjusted carefully.
This is an advantage and a disadvantage at the same time: one the one hand the model
is very flexible, on the other hand it is very labor-intensive to set up and each simulation
might require a different configuration of parameters. Problems might also arise if the
density of agents is too high. The forces acting on them in these situations are very
high and artifacts like the shaking of agents or agents passing through walls might occur.
Optimization methods do not have that kind of problem as they plan their path in a
way that prevents these artifacts from occurring. The problem with these methods is
often that they are too efficient - they have more information available than a normal
human in certain situations and might move faster through dense crowds than an actual
pedestrian.

At the tactical level, quickest path algorithms try to minimize travel time instead of travel
distance, which improves the performance of the simulated agents as we will see later.
These algorithms are more complex and computationally involved than pure shortest
path solvers.

The majority of visualization algorithms discussed before focus on rendering a realistic
view of the virtual scene. They then measure the density of agents and display it. Only
Guo et al. [GWY+11] took an approach that uses techniques from the field of information
visualization. By using glyphs instead of realistic representations of pedestrians it is
possible to encode more information in the representation itself and simultaneously reduce
visual noise that carries no information. In their work they encoded different types of
agents in the glyph. A disadvantage of glyphs is that they are not intuitive and have to
be learned in order to be effective.

13

CHAPTER 3
Agent Based Simulation for

Evacuation

When creating an interactive pedestrian simulation we have to do actual simulation of
the pedestrians first. Without the simulated data we would have nothing to display and
the user would have nothing to interact with. This chapter will explain how we approach
the challenge of simulating pedestrians using an agent-based method.

3.1 Overview

As discussed in the previous chapter, we divide the simulation of pedestrians into three
layers [HB04]: the strategic, tactical and operational layer. The strategic layer is trivial
in our approach - the user sets the strategic goal of the agents by placing target zones in

Start Stop

Compute Preferred
Velocities

Compute Preferred Speeds

Compute New Velocities

Move Agents

Tactical Layer Operational Layer

Compute Density
Map

Figure 3.1: Overview of the simulation of a single timestep

15

3. Agent Based Simulation for Evacuation

the simulated world and assigning them to agents. Our simulation integrates over time
by advancing the simulation time by a fixed amount and then recomputes the state of
the system at that moment. This shift is called a timestep. The computation of one
timestep can be seen in Figure 3.1 and starts with the tactical layer.

The tactical layer first of all computes a density map of the agents. This map is then used
for the next step: the execution of the fastest path algorithm by Kretz et al. [KGH+11].
The results of this algorithm are the preferred velocities of the agents. These velocities
would bring the agents closer to their goal, but might move them through each other.

The operational layer then takes these velocities as input. Following the method presented
by Curtis and Manocha [CM14] the preferred speed is computed first. This speed takes
the available space into account as humans have a stride length that limits their speed
when they have limited space. Then geometric reasoning in velocity space is used to
compute a collision-free trajectory for each agent to take. This involves selecting each
agent individually and computing zones where the selected agent cannot go, because
other agents will move there. This whole computation will take place in velocity space -
this means that all positions are relative to the selected agent and the two dimensions
describe a possible velocity of the selected agent. The details of this method will be
explained later. This ends the computation in one timestep.

3.2 The Operational Layer

For the operational layer we chose the modified version of the Optimal Reciprocal n-Body
Collision Avoidance (ORCA) model as presented by Curtis and Manocha [CM14]. This
decision was made because in a prior attempt to implement an agent-based simulation
one of the big problems has been agents passing through walls. By using the ORCA
model we ensure that this can not happen again. The ORCA model has the problem of
computing too high agent speeds for pedestrian simulation, so the speed model of Curtis
and Manocha was used to eliminate this shortcoming.

3.2.1 Optimal Reciprocal n-Body Collision Avoidance (ORCA)

pA position of agent A
rA radius of agent A
vA velocity of agent A
vmax

A maximum velocity of agent A
vp

A preferred velocity of agent A

Table 3.1: The definition of agent A

The Optimal Reciprocal n-Body Collision
Avoidance (ORCA) algorithm tries to move
agents in a virtual space without them collid-
ing with each other. It was first presented by
Berg et al. [VDBGLM11]. In their method we
assume a 2D-space and each agent in it is rep-
resented by a circle and defined by a few prop-
erties: position, radius, velocity, maximum
velocity and preferred velocity. See Table 3.1
for the variable names.

16

3.2. The Operational Layer

Roughly spoken the simulation of the agents is divided into steps. In each step a new
velocity has to be computed in such a way that the agents are collision-free for a set
amount of time τ . In order to compute the new velocity of a specific agent A we take
every obstacle into account that might collide with agent A: walls, objects and other
agents. For each obstacle a set of collision-free velocities is computed and then the
intersection of all these sets is created. From the resulting set the closest velocity to the
preferred velocity is taken as the new velocity for agent A.

The passing of time is simulated with the Euler method [IIC+96] which approximates
the passing of time by dividing time equally. Each time-step has the same size τ which
denotes how much time passed since the last step. All movements within a step are
assumed to be linear which is of course not completely correct, but the error of this
assumption is small for small step-sizes τ . Because the Euler method is a first-order
method, the error per step is proportional to the square of the step-size τ .

At a more detailed look all computations are made in velocity space as suggested by Berg
et al. [VDBGLM11]. The velocity space is the space of all possible velocities an agent
may take. Not all velocities in the space are valid though: Because we want the agents
to be collision-free they are not allowed to pick velocities that would result in a collision.
Regions in the velocity space that would lead to a collision before τ time has passed are
called velocity obstacles. These velocity obstacles don’t take the velocity of the obstacle
itself into account, for example, if the obstacle is another agent. In this case a collision
will only occur, if the difference of velocities vA − vB lies within the velocity obstacle.

For each velocity obstacle a half-plane is computed. This half plane contains the maximal
amount of collision-free velocities for one agent and one velocity obstacle that are as close
as possible to the agent’s preferred velocity vp

A, so it is optimal. If the velocity obstacle
originates from another agent then the same half plane can be used for the other agent
as well when mirrored by the velocity space’s origin - so it is reciprocal. Because of these
qualities this half plane is called ’Optimal Reciprocal Collision Avoidance’ or ORCA for
short [VDBGLM11].

The intersection of all ORCAs from all velocity obstacles is the region of allowed velocities.
From this region we will the velocity that is closest to the agent’s preferred velocity vp

A

by using linear programming [VDBGLM11].

We will now discuss the detailed approach to creating the ORCA for an agent, then we
will discuss how to adapt these computations for static objects.

Given two agents A and B: we want to compute the ORCA for agent B when using agent
A as our reference. So agent A is our current agent we want to compute the velocity for
and agent B is the obstacle A has to avoid. The velocity obstacle’s shape can be scribes
as follows: take a circle and put a line through the velocity space’s origin and the origin
of the circle. Now move the circle along the line away from the velocity space’s origin
and scale its radius at the same rate as you move it. The area the circle swept over is the
velocity obstacle. This circle-sweep starts for agent B’s velocity obstacle (VO) for agent

17

3. Agent Based Simulation for Evacuation

A at the following position and radius in velocity space (read: position of the velocity
obstacle to A induced by B):

PV OA|B = pB − pA (3.1)

rV OA|B = rA + rB (3.2)

This is sufficient if the time τ during which we want to guarantee collision-free movement
is 0. For a non-zero amount of time τ we have to start with the following values:

PV Oτ
A|B

= pB − pA

τ
(3.3)

rV Oτ
A|B

= rA + rB

τ
(3.4)

Note that for larger values of τ the velocity obstacle comes closer to the velocity space’s
origin thus limiting the possible velocities to pick from even further. As this happens for
each agent in the simulation a large value of τ will cause agents to move slower when
they come near obstacles or move in crowds.

Another way of describing a velocity obstacle is via sets. Let D(p, r) denote a disk:

D(p, r) = {q | ∥q − p∥ < r} (3.5)

then the velocity obstacle V Oτ
A|B can be defined as:

V Oτ
A|B = {v | ∃t ∈ [0, τ] :: tv ∈ D(pB − pA, rA + rB)} (3.6)

A graphical representation of velocity obstacles can be seen in Figure 3.2.

In order to guarantee that agent A and B are collision free for at least τ time, agent
A’s velocity has to be picked in such a way that vA − vB does not lie within the velocity
obstacle V Oτ

A|B . Any set VA that does not include a velocity that will lead to a collision
is a permitted set. So VA is an arbitrary set that is a subset of all possible velocities for
agent A that are collision free. Equally a permitted set VB does also exist for agent B.
Because we want to pick the best velocity for agent A as well as for agent B we have to
consider both sets at the same time.

Now let X
⊕

Y = {x + y |x ∈ X, y ∈ Y } denote the Minkowski sum of two sets. If
vB ∈ VB and vA /∈ V Oτ

A|B
⊕

VB then A and B are guaranteed to be collision free for at
least τ time. CAτ

A|B(VB) is the set of collision-avoiding velocities.

18

3.2. The Operational Layer

x

–1.4 –1.3 –1.2 –1.1 –1 –0.9 –0.8 –0.7 –0.6 –0.5 –0.4 –0.3 –0.2 –0.1 0.1 0.2

y

–0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0

Figure 3.2: Velocity obstacle V Oτ
A|B in A’s velocity space, figure redrawn from original

paper [VDBGLM11]. The gray area contains all velocities vA − vB that will result in a
collision between agent A and B.

CAτ
A|B(VB) = {v | v /∈ V Oτ

A|B
⊕

VB} (3.7)

Because of the nature of the problem choosing the best solution for one agent might lead
to a poor solution for another agent. For example if agent A and B are on a collision
course, the best solution for A would be to stick with its velocity, but agent B would
then have to make way for agent A and completely abandon its goal. What we want is a
fair solution where both agents share the responsibility of avoiding collisions.

A possible way to do that is to define a half-plane in agent A’s velocity space that includes
only velocities that are guaranteed to be collision-free with respect to agent B: ORCAτ

A|B .
To make the definition more general the optimization velocities vopt

A for agent A and vopt
B

for agent B are introduced. Normally vA = vopt
A , but other choices are possible as well.

In this work we chose vA as our optimization velocity. Berg et al. formally defined this
half-plane as follows [VDBGLM11, p. 6]:

"Definition 1 (Optimal Reciprocal Collision Avoidance). ORCAτ
A|B

and ORCAτ
B|A are defined such that they are reciprocally collision-avoiding

and maximal, i.e. CAτ
A|B(ORCAτ

B|A) = ORCAτ
A|B and CAτ

B|A(ORCAτ
A|B) =

ORCAτ
B|A, and such that for all other pairs of sets of reciprocally collision-

19

3. Agent Based Simulation for Evacuation

avoiding velocities VA and VB (i.e. VA ⊆ CAτ
A|B(VB) and VB ⊆ CAτ

B|A(VA)),
and for all radii r > 0,

|ORCAτ
A|B ∩D(vopt

A , r)| = |ORCAτ
B|A ∩D(vopt

B , r)| ≥

min(|VA ∩ D(vopt
A , r|, |VB ∩ D(vopt

B , r)|).

This means that ORCAτ
A|B and ORCAτ

B|A contain more velocities close
to vopt

A and vopt
B , respectively, than any other pair of sets of reciprocally

collision-avoiding velocities. Also the distribution of permitted velocities is
"fair", as the amount of velocities close to the optimization velocity is equal
for A and B."

In order to construct such an ORCAτ
A|B we need to define the vector u. u is a vector in

agent A’s velocity space that points from vA − vB to the nearest point on the edge of the
velocity obstacle V Oτ

A|B. More formally:

u =

 arg min
v ∈ ∂V Oτ

A|B

||v −
(
vopt

A − vopt
B

)
||

− (vopt
A − vopt

B

)
(3.8)

If vA − vB lies within the velocity obstacle, u is the minimal correction that agent A
needs to apply to its current velocity in order to stay collision-free. If vA− vB lies outside
of the velocity obstacle, u sets a maximum delta that can be applied to A’s velocity if
we want to stay collision-free. Because the other agent B will run the same calculations
we can assume that B will also try to avoid agent A. So when using u to correct the
current velocity we will assign half of the responsibilities to each agent. So instead of
using u to correct the velocity, we will only use u

2 . This way both agents will share the
responsibility of avoiding a collision equally.

Now let n be the unit normal vector at the point on the velocity obstacle where u points
at. In our example above n defines the direction in velocity space that will always be
collision free. With both u and n defined we can now define ORCAτ

A|B:

ORCAτ
A|B =

{
v |
(

v −
(

vA + u

2

))
· n ≥ 0

}
(3.9)

Figure 3.3 shows the graphical representation of the above equation.

Now we will take a look at how Berg et al. solved the problem for multiple agents. First
an optimal reciprocal collision avoiding set (see Equation 3.9) is computed for each agent
that might collide with our current agent A. So if for example agent B, C and D are
in the vicinity of agent A we will calculate ORCAτ

A|B, ORCAτ
A|C and ORCAτ

A|D. A
collision between two agents A and B might occur if pB ∈ D (pA, vmax

A + vmax
B). Then

20

3.2. The Operational Layer

x

–1.4 –1.2 –1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1 1.2 1.4

y

–0.6

–0.4

–0.2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

Figure 3.3: Graphical representation of ORCAτ
A|B: the set of permitted velocities for

agent A with respect to agent B in A’s velocity space, figure redrawn from the original
paper [VDBGLM11]

the closest velocity to the preferred velocity vp
A that is still contained in the intersection

of all prior computed half-planes is chosen for the next simulation step (see Figure 3.4).
Using a modified version of linear programming that takes the maximum velocity of the
agent into account can solve this problem efficiently is recommended.

Under very dense conditions this linear system may not be solvable which means that we
cannot guarantee a collision-free trajectory for the next τ amount of time. Berg et al.
proposed using a 3-dimensional linear system in this case that tries to move the agent in
such a way that it is overlapping as little as possible with the other agents. In Order
to achieve this the half-planes are placed on a 45° angle around their intersection with
the xy-plane in such a way that the normal vector of the plane points in the negative z
direction. This system is guaranteed to have a solution.

All static obstacles are represented as lines. This has the advantage of simpler computa-
tions and more complex obstacles can be represented as a series of lines. So if for example
we want to model a desk, we would use 4 lines that make up the boundary of the desk.

The velocity obstacle of lines is a 2D capsule. A 2D capsule can be imagined as a circle
that is cut in half, the two semi-circles are then moved away from each other along the
normal direction of the cut and finally the opposing ends of the semi-circle are then
connected with lines. More formally:

V Oτ
A|O = {v | ∃t ∈ [0, τ] :: tv ∈ ⊕ −D (pA, rA)} (3.10)

As O is not moving the inverted set of the velocity obstacle would be fully sufficient in

21

3. Agent Based Simulation for Evacuation

x

–1 –0.5 0.5 1 1.5 2 2.5 3 3.5

y

–1.5

–1

–0.5

0.5

1

1.5

2

0

(a) The agents and their current velocities in world space

x

–1.5 –1 –0.5 0.5 1 1.5 2 2.5 3 3.5

y

–0.5

0.5

1

1.5

2

2.5

3

3.5

0

(b) The ORCAs with respect to agent A and their inter-
section in A’s velocity space

Figure 3.4: Avoiding multiple agents from the perspective of agent A, figure redrawn
from the original paper [VDBGLM11]

22

3.2. The Operational Layer

choosing a collision-free velocity, but we want to also use it in our linear programming.
So we define a half-plane for static obstacles as follows:

ORCAτ
A|O = {v|(v − (vA + u) · n ≥ 0} (3.11)

Note that for static obstacles we use u instead of u
2 which is used in the agent-agent case.

As discussed before u represents the vector that has to be added to the agent’s current
velocity in order to stay collision free. When two agents avoid each other both take half
of the responsibility, so each agent only has to account for u

2 . With static obstacles the
agent has to take full responsibility, because static obstacles cannot move, so the agent
has to account for the full u.

3.2.2 ORCA for Pedestrian Simulation

The ORCA algorithm was originally designed for robots, but Curtis and Manocha pointed
out that it could also be applied to pedestrians [CM14]. There they found that "The
ORCA algorithm has several desirable properties" [CM14, p. 5] and pointed to other
papers that stated the following points:

• Efficiency (35, 000 agents in better than realtime on an Intel i7 running at 2.67
GHz) [CGZM11]

• Stability & consistency for large timesteps (0.2 s) [CSM12]

• Self-organizing behavior (jamming, lane formation, etc.) [GCLM12]

• Realistic microscopic interactions [GLM10]

There is one property that the model does not exhibit: pedestrians become slower if
the density of the crowd increases. The interaction between speed and density can be
visualized using a fundamental diagram [Wei93]. The fundamental diagram has two axis:
one axis is the speed of the pedestrian and the second axis is the density of the crowd
near the pedestrian where we measured the speed. They used the experimental data
from Seyfried et al. [SSKB05] to show that the ORCA algorithm lacks this behavior as
shown in Figure 3.5.

In order to address this issue Curtis and Manocha proposed a new model [CM14]. This
model limits the maximum speed of the agent based on the density in such a way that it
fits the experimental data [SSKB05]. The model consists of two factors: a physiological
and a psychological one. The physiological factor captures how much space is available
to take a stride, because the speed of a pedestrian depends on the stride length. The
psychological factor describes how much people would like to stay away from others in
order to keep comfortable.

23

3. Agent Based Simulation for Evacuation

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-1)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
p

e
e

d
 (

m
s

-1
)

Sim ulated vs Measured: Rvo

Measured

Sim ulated

Density (m

Figure 3.5: Fundamental diagram of measurements of pedestrians and simulated agents
using ORCA. The speed of the simulated agents stays the same with increasing densitiy
whereas the measurements show a decreas in the speed with increasing density. Figure
from original paper[CM14]

The physiological constraint describes the relation between stride length (L) and the
natural walking speed (vnat). This was described by Dean [DCSRO65]. Formula 3.12
shows his model where α = 1.57 is the stride factor and H = height

1.75 is the normalized
height of the pedestrian in meters.

L(vnat) = H

α

√
vnat (3.12)

The psychological constraint models the mental repulsion between people: Two persons
will keep a certain distance from each other if they walk past each other even if it means
to take a slightly longer path. If this distance cannot be maintained the pedestrians will
slow down even thought, physically speaking, they would have enough space to keep
their current speed. This psychological constraint is not always equal: it’s lower when
two persons know each other and it also differs from culture to culture.

To model these complex interactions we will simplify it and use a factor that is multiplied
with the natural stride length L(vnat) in order to scale the physically needed space up, so
agents in our simulation will slow down earlier than physically necessary. We will call this
factor the stride buffer β. Curtis and Manocha used data by Seyfried et al. [SSKB05] to
compute a stride buffer of β = 0.9. With β we can define the extra buffer space B:

B(vnat) = βL(v) (3.13)

24

3.2. The Operational Layer

With this information we can create a relationship between the available space S and the
natural speed vnat by simply adding the physiological constraint, given by Equation 3.12,
to the psychological constraint, given by Equation 3.13.

S(vnat) = L(vnat) + B(vnat) = H(1 + β)
α

√
vnat (3.14)

Equation 3.14 describes how much space must be available for a given speed. We need it
the other way round: We need a model that describes what the natural speed for a given
space is. Of course agents cannot become faster than their maximum speed vmax, so we
have to limit it using a min function.

vnat(S) = min
(

vmax,

(
α

H(1 + β)S

)2
)

(3.15)

In order to apply formula 3.15 to a simulation the available space has to be measured.
Because an exact measurement is not trivial we will estimate it. This estimation is
designed to model the impact of other agents on the current one. In order to compute it
for one agent A we will measure the distance to every other agent in the neighborhood of
A. This distance will be modified by the heading and position of each agent: agents that
move away or are behind from our agent A will be perceived farther away while agents
on a collision course or in front of agent A will be perceived closer than they really are
(see Figure 3.6). We will call this the effective distance metric between two agents A and
B eBA. The final space estimation is then done by taking the minimum of all effective
distances (see Equation 3.22).

First we will need to compute the maximum Euclidean distance where agent A might
influenced by other agents and we will call it δA.

δA = (1 + β)H
2α

√
vmax

A (3.16)

Then we will compute a penalty for the direction ∆BA and a penalty for the orientation
oBA. Let in the following −→v p

A the preferred direction of walking for agent A as a
unit-vector.

dBA = ||pB − pA|| (3.17)
−→
d BA = pB − pA

dBA
(3.18)

∆BA = δA

(
1−

(−→v p
A ·
−→
d BA

))
(3.19)

oBA = max
(

rB,
H
√
|vB|(1 + β)|−→v p

B ·
−→
d BA|

2α

)
(3.20)

25

3. Agent Based Simulation for Evacuation

x

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

y

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0

(a) Agent B is moving towards agent A
and is perceived closer than it actually
is.

x

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

y

–0.2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0

(b) Agent B is moving away from
agent A and is still perceived
closer, because B is in front of
A.

Figure 3.6: The effective position (EBA) of agent B as perceived by agent A, figure
redrawn from the original paper [VDBGLM11]

The effective distance eBA between agent A and B is then just the Euclidean distance
with the two penalties applied.

eBA = dBA + ∆BA − oBA (3.21)

Let NA be the set of agents in the neighborhood of agent A, excluding agent A itself.
Then the available space for agent A is the minimum effective distance between agent A
and any agent in it’s neighborhood.

SA = min
n∈NA

(EnA) (3.22)

3.2.3 Pedestrian Slope Speed Model

Our simulation allows the user to either choose a flat domain or a 2.5D domain. The
2.5D domain is based on a height-map, so it is capable of modeling hills, but not caves
for example. In other words for each point in the domain there can only be one height
assigned to it. Pedestrians moving up/down a slope are slower in contrast to moving on a
flat surface, because they have to spend more energy for going up or downwards as they
have to lift their body against gravity or stop themselves from tumbling down the hill.

The slope s is computed as shown in Equation 3.24 where v2D is the 3-dimensional vector
of the agent’s velocity with its z-value set to 0 and v3D is the 3-dimensional velocity of the

26

3.2. The Operational Layer

agent. Because our model is in 2D there is no 3-dimensional velocity vector available. In
order to obtain it, we estimate the last position of the agent in 2D by adding the inverse
velocity −−→v to the current position p and computing the height-difference between those
two points. Let HM(x) be the height of a point x on our height-map.

v3D =

−→v x−→v y

HM(p)−HM(p−−→v)

 (3.23)

Where −→v x is the x-component of −→v and −→v y the y-component of −→v . The angle of the
slope can then be computed in the following way:

s = cos−1
(

v2D · v3D

|v2D||v3D|

)
(3.24)

The slope is then used to compute the new preferred speed of the agent A based on the
slope vslope

A (see Equation 3.25).

vslope
A = mMs + vmax

A (3.25)

M = vmax
A

1.84 (3.26)

m ≈ −1.4954 (3.27)

Where M (Equation 3.26) normalizes the maximum speed by the average maximum
speed so it reaches 0 at the same inclination for different maximum speeds. m (Equation
3.27) is a value obtained from approximating experimental data in meter times degree
per seconds. The model was based on experimental data gathered by Fujiyama and Tylor
[FT04].

This model is active at all times in addition to the speed model explained in section 3.2.2.
To obtain the overall preferred speed of the agent the minimum of the two speed models
is taken.

vp
A = min

(
vnat

A , vslope
A

)
(3.28)

3.2.4 Improving the Speed of the Algorithm

The operation layer so far consists of the ORCA-algorithm and two speed models that
limit the maximum speed of the agent. In order to increase the computational speed of
the algorithm we first have to understand where the bottlenecks are.

In the ORCA algorithm we have to iterate through every agent and check it against
every other agent to make sure we do not collide with any of them. This would lead to a

27

3. Agent Based Simulation for Evacuation

quadratic runtime dependent on the number of agents. But depending on the situation we
don’t have to look at every other agent. Let’s assume we have two agents A and B: A and
B can only collide with each other if and only if ||pA− pB|| ≤ rA + rB + ∆t(vmax

A + vmax
B),

given ∆t is the amount of time till the next simulation step. We can generalize this
statement even more when using the maximum of all maximum velocities vmax and the
maximum of all radii rmax:

||pA − pB|| ≤ 2rmax + ∆t2vmax (3.29)

All agents that fulfill this inequality are defined to be in the neighborhood of each other.
This definition of the neighborhood might include agents that cannot collide with each
other, but the simplifications allow for a less complicated search algorithm. We will call
2rmax + ∆t2vmax the neighborhood radius.

The neighborhood is also important when using the speed model of Curtis and Manocha
[CM14], because we need to calculate the minimum effective distance to all agents in the
neighborhood.

So we have to find a data structure that allows for fast retrieval of agents in the
neighborhood of another agent as well as a short creation-time, because the structure
has to be re-created in each simulation step as all agents are moving. Possible solutions
to this are grid-based approaches like a regular search grid or a kd-tree [Ben75]. Because
it is faster to build and easier to implement we chose a regular search-grid.

This data structure divides the domain into axis-aligned cells of equal sizes. Each cell
contains a reference to all agents that have their center p inside the cell. To retrieve an
agent’s neighborhood a circle with the neighborhood radius is tested against the grid to
retrieve a list of cells intersecting with said circle in Θ(1) runtime. Each agent in those
cells is then tested in turn if they really lie within the requested boundary.

This means that the runtime of the algorithm depends on the number of agents that are
retrieved, but this number is limited by the physical constraints of the agents. Agents
have a radius and should not occupy the same space as other agents. In reality there
might be some overlap as discussed in section 3.2.1, because the linear system might not
be solvable and a collision might be unavoidable. But this should only happen under very
dense conditions, so for the sake of this estimation we simplify by stating that agents
do not overlap. So in this case the number of agents in a single cell is limited by the
size of the cells in relation to the radius of the agents. This means that the runtime is
ultimately dependent on the size of the cells in relation to the radius of the agents.

So smaller cells yield a better runtime, but the drawback of this is the memory consump-
tion. Each cell has to be allocated in memory, so smaller cell sizes have a higher memory
footprint. Also there is no benefit in cell sizes smaller than the agent radii, because then
iterating through the cells will become the limiting factor as there are now more cells
than agents in an agent’s neighborhood.

28

3.3. The Tactical Level

So by using a regular grid for the neighborhood search we can cut computational time
and speed up the computation of the models.

3.3 The Tactical Level

3.3.1 The Quickest Path Model

For the tactical level we decided to use a quickest path approach. Kretz et al. [KGH+11]
presented an algorithm that is able to compute an approximation to the quickest path
for pedestrians in realtime. It generates a discrete distance field to the targets, enriches
it with additional information and then computes the first derivative of it. The direction
in which the first derivative vector points is the direction an agent should walk. Each
group of pedestrians with the same target can share such a vector field.

A distance field divides the domain into axis-aligned cells of equal sizes. Each cell contains
the shortest distance from the goal. In a simple case, like standing on an open field,
this distance is equal to the Euclidean distance from a cell’s center point to the goal,
but we also need to be able to model more complex scenarios with obstacles. This is
not a simple problem and the true solution to this is generated by solving the Eikonal
Equation [Fra27]. In order to improve performance we will approximate the solution to
the Eikonal Equation by using a flood-filling algorithm.

The flood-filling algorithm computes the distance from some set of starting cells, also
called seed cells, and assigning a distance from these starting cells to their neighbors.
This is repeated with all neighbors until the whole domain has been computed. In order
to assign a distance to neighboring cells we have to define two more fields: a cost field Fc

and a neighbor cost matrix Nc.

The cost field Fc is needed for defining obstacles. This field has the same properties as
our distance field, but instead of storing distances it stores the cost we need to add when
entering the cell. If the cell is free, the cost is defined as 0 and if it is blocked, −1 is
assigned. Later we can add other costs to this field in order to estimate the travel time
instead of the distance.

The neighbor cost matrix Nc defines the cost that has to be added to the distance based
on the direction of the movement. It can be described as a 3x3 matrix:

Nc =

 n1,1 n1,2 n1,3
n2,1 n2,2 n2,3
n3,1 n3,2 n3,3

 (3.30)

In this matrix the middle n2,2 represents the current cell and the other 8 are its neighbors.
The values in the matrix are the costs of going to that particular neighbor.

The values of the two costs Fc and Nc are added up in order to obtain the cost of entering
a particular cell from a particular cell. For example if we want to get the cost of moving

29

3. Agent Based Simulation for Evacuation

from the cell at position p1 to it’s right neighbor at position p2 = p1 + (1, 0) the cost
would be calculated like this: Fc(p2) + n2,3

cost =
{

Fc(p2) + Nc(p2 − p1) if Fc(p2) ≥ 0
∞ otherwise

(3.31)

In our example Nc(p2 − p1) accesses the neighbor cost matrix at n2,3. This cost matrix
is an approximation of the distance between the center points of the two cells. Choosing
a cost matrix influences the resulting distance field fundamentally. Because we are using
these cost matrices to measure distances we will call them metrics.

Nchess =

 ∞ 1 ∞
1 0 1
∞ 1 ∞

 , Nman =

 1 1 1
1 0 1
1 1 1

 , N√
2 =

√

2 1
√

2
1 0 1√
2 1

√
2

 (3.32)

Equation 3.32 shows three popular cost matrices: Nchess results in the chessboard metric,
Nman results in the Manhattan metric, and N√

2 results in the
√

2-metric. When talking
about these metrics we will imagine a walker that walks on grid cells always applying
the cost matrix for each step it takes. Of all possible moves to reach a cell, we will only
look at the move with the minimal cost.

As discussed before, the ground truth for the metric is the solution of the Eikonal
Equation. When coloring in all cells of the distance field containing the solution of the
Eikonal Equation smaller than a set distance, the colored cells will form a circle on an
open field with no obstacles. This image will serve us as the ground truth to all of our
approximations done by flood filling using a certain metric.

As seen in Figure 3.7a The chessboard metric creates s diamond-shape after a fixed
distance, because the walker cannot walk diagonally. In contrast to that with the
Manhattan metric the walker is allowed to walk diagonally - with the same cost as going
straight. This results in a square and can be seen in Figure 3.7b. Both the Chessboard
as well as the Manhattan metric have large errors compared to the ground truth, e.g.,
for the 8 neighbors of a cell the mean error (mean deviation from the ground truth) is
20.7% for the Chessboard metric and 14.6% for the Manhattan metric.

The
√

2-metric is the middle ground between the former two. Here the walker is also
allowed to walk diagonally, but it costs as much as the actual distance between the two
cells is, i.e.,

√
2. On a small scale this seems like a perfect approximation, e.g., for the 8

neighbors of a cell the mean error compared to the ground truth is 0%. This error grows
with larger distances from the start, e.g., for the 24 cells (2 rows) surrounding a certain
cell the mean error amounts to 2.7%. The shape produced after a certain distance is an
approximation of a circle. The result of this can be seen in Figure 3.7c.

Now we can put everything together in the flood filling algorithm describes in Algo-
rithm 3.1. For this algorithm we will use a queue to keep track of cells where we still

30

3.3. The Tactical Level

1

1

1

1

2

2 2

22

2

2

23 3

3

3

3

3

3

3

3

3

3

3

(a) Chessboard metric,
see Nchess in Equa-
tion 3.32

3

3

3

3

3

3

3

3 333 3

3 333 3

22 1

1

1

1

1

11

1

2

2

2

2

3

3

3

3

3

3

3

2 222 2

2 222 2

(b) Manhattan metric,
see Nman in Equa-
tion 3.32

3.8

3.4

3

3.4

3.8

3 3.43.43.8 3.8

3 3.43.43.8 3.8

2.42.4 1.4

1

1.4

1.4

1

1.41

1

2

2.4

2

2.4

3.8

3.4

3

3.4

3.8

2 2.42.42.8 2.8

2 2.42.42.8 2.8

(c)
√

2-metric, see N√
2

in Equation 3.32

Figure 3.7: The different flood-filling metrics. The green cell is the start, all black cells
have a distance < 4.

have to compute the distances to all neighbors. This queue is initialized with our seed
cells. As long as there is something in the queue, we will get and remove the first element
and iterate though all neighbors of the retrieved cell. For each neighbor n a new cost
is computed, but only assigned if n is not blocked or if the distance field already has
a smaller distance at this position. If the new cost is assigned, n will be added to the
queue.

Algorithm 3.1: The flood filling algorithm
input : A cost field Fc , a list of seed cells S, the neighbor cost matrix Nc

output : The distance field Fd

1 Fd ← set all cells to ∞, except cells ∈ S;
2 Q← a new queue;
3 Q.addAll(S);
4 while not Q.isEmpty() do
5 cell← Q.pop();
6 foreach neighbor n of cell do

// Negative costs are impassable cells
7 if Fc[n] ≥ 0 and Fd[cell] + Nc[n] + Fc[n] < Fd[n] then
8 Fd[n]← Fd[cell] + Nc[n] + Fc[n];
9 Q.push(n);

10 end
11 end
12 end

To obtain a distance field that produces Euclidean distances instead of approximations a
more sofisticated solver has to be applied. The Fast Marching Method [Set99] and the
Fast Iterative Method [JW07] are examples for such a solver.

31

3. Agent Based Simulation for Evacuation

After the distance map has been computed the derivative of it has to be taken. This
derivative is a 2D vector that points in the direction of the seeded cells. For the
computation we have to distinguish between 2 cases: the unblocked case where all
neighbors of the cell are not blocked and the blocked case where at least one neighbor of
the cell is blocked. In the unblocked case the matrices in Equation 3.33 are convoluted
with the field. For a discrete derivation a derivation matrix is placed over the cell to
derive, all overlapping values are multiplied and the resulting numbers are then added
up. In order to obtain the x and the y-component of the derivative we have to this twice.
In the following let ∇x be the derivation matrix of the distance map in x-direction and
∇y be the derivation matrix of the distance map in y-direction.

∇x = 1
9

 −1 0 1
−1 0 1
−1 0 1

 , ∇y = 1
9

 1 1 1
0 0 0
−1 −1 −1

 (3.33)

In the blocked case we also have to cope with the special case of non-walkable cells. These
should not contribute at all to the derivative. A simple solution could be to assign a very
high cost to these cells, but this would result in a repelling behavior next to blocked cells
as the high value would outweigh all the other distances easily.

We decided to use a greedy approach to approximate the derivative in these special
cases. Out of the eight neighbors only walkable cells are taken into consideration and
the derivative is approximated by the vector pointing to the lowest value that is greater
or equal to zero. See Algorithm 3.2 for a pseudo-code of the algorithm.

So far we managed to create a distance map that is able to find the shortest path to the
target areas. In order to find the quickest path, Kretz et al. [KGH+11] took two factors
into consideration: the density of the agents at a particular cell and the mean direction
agents in a cell are heading. The model for the estimated walking speed w̃ looks like this:

w̃(X) = max
(

0, g

(
1 + h

v(X) · ∇Fd(X)
v0 |∇Fd(X)|

))
(3.34)

Fd(X) is the distance field sampled at the point X, g is a parameter setting the overall
strength of the model, h is a free parameter that sets the weight of the penalty based on
the facing of an agent, v(X) is the mean direction of all agents occupying the cell at X
and v0 is the mean desired speed of all agents.

With the help of this model a time field Ft can to be computed using the distance field
Fd. Ft contains the estimated travel time for any agent at any point in the domain. We
take a slightly different approach from the original paper at this point, because we are
using the flood-filling algorithm for the field computations and we also have to add the
slope of the terrain into the equation as well.

In Order to compute the cost field Fc for the domain we have to combine all models with
each other. The density D of the agents is multiplied by the prior discussed estimated

32

3.3. The Tactical Level

Algorithm 3.2: Compute the derivative of a field
input : A distance field Fd

output : The derivative of the distance field F ′
d

1 foreach cell in Fd do
2 valid ← true;
3 foreach neighbor N of cell do

// Check if the cell is walkable
4 if Fd[N] < 0 then
5 valid ← false;
6 end
7 end
8 if valid then
9 F ′

d[cell]← computeDerivative(Fd,cell);
10 else
11 F ′

d[cell]← vector from cell to min(Fd) at each neighbor of cell;
12 end
13 end

walking speed w̃ (see Equation 3.34). As discussed in section 3.2.3 the slope parameter
ws is multiplied with the slope s(X) (see Equation 3.24) at position X and gets added
to the cost. Then the flood filling algorithm computes Ft and uses Fc as its cost field as
shown in algorithm 3.1. The derivative of Ft is then finally used to compute the direction
of the fastest path for every position in the domain.

Fc(X) = 1 + D(X) max
(

0, g

(
1 + h

v(X) · ∇Fd(X)
v0 |∇Fd(X)|

))
+ wss(X) (3.35)

Figure 3.8 shows the green agents moving towards the green target area. The ground
visualizes the time field: The values are divided into multiple equally big intervals and
each interval is represented by a color. It can be seen that although the top corridor is
clearly the shortest path to go from the left to the right room, the time map shows that
using the bottom corridor yields a comparable estimated arrival time, because of the
congestion at the entrance to the top corridor. In this example several agents are already
taking the lower corridor, because they estimated it to be the faster route for them.

3.3.2 Density Field Computation

The density of pedestrians can be computed in different ways. A very simple approach
would add one to a cell’s density if a pedestrian’s center point is inside that cell (Figure
3.9a). One could imagine this method as just counting the number of agents inside a cell.
This works well if the cell size is much bigger than an agent, because then the agent’s

33

3. Agent Based Simulation for Evacuation

Figure 3.8: The time field of the estimated arrival of the agents. Number of agents is
the current number of active agents in the simulation. The path of one agent is traced.
It first tried to go through the upper corridor, but then switched to the lower corridor
when the congestion formed.

radius is not that important. If it is the other way around, an agent might cover multiple
other cells that will not get added one to their density, because the agent’s center is not
inside them. It seems like an easy fix to just add one to each cell that intersects the
agent’s radius, but this would create not very representative densities in cases where the
agent barely overlaps a cell. In this instance the cell would get added one to its density
despite the agent not really overlapping it.

Another approach is computing the overlapping area of the cell and the agent normalized
by the area of the cell (Figure 3.9b). This means that each cell contains an overlapping-
percentage where a value of < 1 means that some part of the cell might be overlapped by
an agent, a value of 1 means that the cell is complete overlapped by an agent and a value
> 1 means that the cell is over-populated: it contains more agents than it has room for.
In this last case the agents themselves are overlapping each other, which should not, but
might happen under very dense conditions. Tests with this kind of density calculation
yielded unnatural agent behavior, because the agents were avoiding each other much
more than was necessary.

To solve this issue we used a sampling method where the agent’s center point is the

34

3.3. The Tactical Level

(a) The density of a cell is the
number of agents with their
origin inside a cell

0.80 0.04

0.08

0.000.08

0.40

0.80

0.04

0.98

(b) The density of a cell is
the areal overlap of the agents
with a cell

Figure 3.9: Two density computation methods

center of a Gauss bell. Unfortunately the Gauss bell is not constraint, so the influence of
an agent would reach infinitely far which would be bad for performance. So we decided
to use a modified Gauss bell that is constraint, so we do not have to update the whole
density field when adding the influence of a single agent to it. This modified bell is
constraint to a circle at the agent’s center point in such a way so the bell reaches zero
at the edge of the circle. The circle’s radius r is the radius of the agent plus a free
influence-variable ρ. Because this circle is related to an agent we will call it the agent’s
influence circle. The standard-deviation σ of the modified Gaussian curve g(x) is chosen
so that r = 3.5σ. Equation 3.36 shows that we also subtract the value at the edge of the
circle from the whole equation - in fact moving it down so g(x) becomes 0 at the edge,
see Figure 3.10.

r = rA + ρ, σ = r

3.5

g′(x) = 1
σ
√

2π
e− x2

2σ2 − 1
σ
√

2π
e− 3.52

2

g(x) =
{

g′(x) if − r < x < r

0 otherwise
(3.36)

In order to sample g(x) on a cell that is intersecting with the agent’s influence-circle
a set number of equally distributed sample points (we used nine) are defined and g(x)
is evaluated at these points as seen in Figure 3.11. Then the average sampled value is
added to the cell’s density.

35

3. Agent Based Simulation for Evacuation

x

–1.8 –1.6 –1.4 –1.2 –1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

g(x)

0.2

0.4

0.6

0.8

1

0

Figure 3.10: The modified Gauss g(x) from Equation 3.36 for r = 1.5. This modified
Gauss produces only values greater than zero within the interval]− r; r[outside of this
interval the function is zero.

Figure 3.11: C0 through C8 are cells of a grid. Over the grid the modified Gauss bell
curve g(x) is positioned and the 9 sampling points of cell C4 are shown.

36

3.4. Initial States and Boundary Conditions

3.4 Initial States and Boundary Conditions
When creating a simulation the initial state has to be defined. This happens via boundary
conditions. The simulation has the following boundary conditions:

• Size of the simulation domain

• Target area for each agent

• Starting position of each agent

• Position and form of walls and other static obstacles in the domain

• All of the free parameters mentioned in the previous sections

In the following we will go through all boundary conditions mentioned above and explain
how they can be specified.

First we will take a look at the simulation domain. The simulation domain is an axis-
aligned rectangle that defines where agents are able to exist. There should not be an
agent outside of the domain, because the domain defines the dimensions and cell-size
of all above discussed fields like the density field, distance field and time field. Because
of this the dimensions should be chosen as small as possible to minimize computational
effort. To prevent agents from being pushed out of the domain, the edges of the domain
are treated like walls. Additionally a height-map can be defined for the domain which
assigns each point a certain height. The height map supports three modes: flat terrain,
procedural terrain and geo-data. Flat terrain produces a height map with height zero at
every point. Procedural terrain uses a noise function to generate a bumpy landscape and
geo-data mode imports geographical height data from an input-file.

Agents in our simulation need one or more targets. Target are specified as areas. An area
can be defined by defining a polygon. A target is given a name and agents will identify
their targets by those names. An agent may have multiple targets, in that case the target
with the lowest estimated arrival time (calculated via the time map, see Section 3.3.1) is
chosen. If an agent arrives at a target, the agent is removed from the simulation. This is
the only way agents can be deleted.

Parameter Minimum Maximum
Maximum Speed vmax

a 1.25 m/s 1.5 m/s
Radius rA 0.18 m 0.2 m

Table 3.2: The default values of the boundary condi-
tions for an agent. The position pA is defined via one
of the methods described in the text. All other values
of an agent like va or vp

A are set to zero.

When placing agents the tar-
get area can be specified. An
agent will always try to reach
the assigned target area as fast
as possible. Each parameter of
an agent can be set between a
lower and an upper limit. The
actual parameter value is then
chosen randomly within these

37

3. Agent Based Simulation for Evacuation

Figure 3.12: Agents spawned in a polygon on the left and a single agent on the right.

limits. The default setting for
an agent can be seen in Table 3.2.

The starting position of an agent is a special case. In order to improve usability we used
three methods of defining an agent’s position:

• Placing agents individually

• Specify an area

• Create an emitter

When placing agents individually, the position is chosen by the user, but only one agent
at a time can be placed. When placing agents using an area, a whole group of agents
can be created at once. We will call such an area a spawn area. The number of agents
created by a spawn area can be defined in two ways: defining the number directly or
defining a desired agent density. Either way the agents will then be placed inside the
spawn area at random.

Whether placing agents individually or by using a spawn area, the agents will be created
in a burst: at a certain point in time these agents will appear. Currently this is only
possible at the start of the simulation. Figure 3.12 shows a rectangular area that has
spawned a burst of agents as well as a single hand-placed agent.

There is also another method available: using an emitter. An emitter creates agents over
time rather than creating them all at once. It will start at a certain point in time and
create agents until the simulation ends. The rate at which it creates them can be defined
as well as the location. The location can be designated by a point, a line, or an area.

All static obstacles are represented as lines. The user is able to draw them as they please.
Obstacles may range from potted plants to walls or fences. It is not possible for agents

38

3.4. Initial States and Boundary Conditions

Figure 3.13: A spawn area with two targets assigned to it. The 14 created agents will
move to the target with the lowest estimated arrival time.

to surmount these - the only possible way is to move around them. This may not be
very realistic as real people can climb over low obstacles or even fences. Especially in an
emergency situation, people in panic may resort to such methods.

39

CHAPTER 4
Visualization and Interactive

Simulation Control

In the previous chapter we talked about how we generate simulation data. In this chapter
we will talk about how we visualize and interact with that data. We will talk about the
used methods, the chosen representations of agents, obstacles etc., and how Visdom [vis]
supports the user with its already build-in features.

4.1 Data Visualization

The data generated by the simulation for each simulation step is the following:

• The position and velocity of each agent

• The current density field Fd generated by the tactical layer

• The estimation of the quickest path to the target area, generated by the tactical
layer

We will discuss how to visualize all of the above in the following sub-sections.

4.1.1 Agent Visualization

We propose to represent agents by simple glyphs instead of life-like models of humans,
because we want to reduce visual clutter and focus on the data we want to visualize: the
position, the speed, and the heading of an agent. Such a glyph looks like a board-game
piece. A sphere sits on top of a cone to form a head and an additional cone as a nose
so the user can identify the walking direction of an agent even if viewing a still image.

41

4. Visualization and Interactive Simulation Control

Figure 4.1: A closeup of agents. An agent consists of a cone, a sphere, and another cone
as a ’nose’

Figure 4.2: Two selected agents traced by two lines with the velocity displayed in an
information box above them.

The radius of the cone and sphere is the radius of the simulated agent and the height
is the radius multiplied by a constant, so agents with smaller radius are also smaller in
height. A close up of an agent can be seen in Figure 4.1. Another variable encoded in
this glyph is the current speed. It is represented by the brightness of the agent’s color
where a speed of zero is black and the maximum speed is the full color brightness.

Individual agents may be selected (see Figure 4.2). If this happens the path of the agent
so far is drawn as a line on the screen and additional information, like its current velocity,
is displayed. The speed of the agent is also plotted on a time vs velocity graph.

There is also a plot available for agents in a specific area. In this case the plot can
either show the current number of agents in an area or the agent density inside that area.
Figure 4.3 shows the agent density of a region in front of a series of narrow corridors.

42

4.1. Data Visualization

(a) A plot of the agent density over time

(b) The scene used to take the measurements

Figure 4.3: Measuring the agent density in a certain region

43

4. Visualization and Interactive Simulation Control

Figure 4.4: The density field of the agents can be seen on the floor. White represents
a density of zero agents per square meter (A/m2), yellow a density of one A/m2, red a
density of two A/m2, and black a density greater or equal to three.

4.1.2 Agent Density Visualization

The density of agents can also be visualized on the domain itself. In Section 3.3.2 we
described how the density of a group of agents can be measured, now we want to present
this data to the user. As shown by Fanini1 and Calori [FC14], and Handel et al. [HGPA15]
this can be done by the use of the floor the agents are walking on. Fanini1 and Calori
rendered a 3D-graph of the density by creating a wire mesh that encodes the density
of the agents in the elevation of the mesh from the floor and displaying it on top of the
streets. Handel et al. took a simpler approach: They created a grid and colored the cells
like in a heat map using the number of agents in that cell as data (see Figure 4.4). We
did something similar to that with a few exceptions: First their heat map was normalized
to the current maximum of agents in a single cell and second their cells were considerably
bigger than ours. Our heat map is not normalized and turns from white, at zero agents
per square meter (0A/m2), over yellow (1 A/m2) and red (2 A/m2) to black (≥ 3 A/m2).
This has the advantage that the user is able to spot dangerous densities of agents more

44

4.1. Data Visualization

(a) The average of all density fields up to now.

(b) The maximum of all density fields up to now.

Figure 4.5: Density Aggregations

easily as the scale never changes. A disadvantage of our approach is that it is no longer
possible to spot the cell with the currently highest density.

In order to give the user an overview of what has happened during the simulation, we
introduced aggregations of the density field. These aggregations take the density fields
from each time step up to now and aggregate the density values for each cell through
time. We propose three types of aggregation:

• Average of the densities

45

4. Visualization and Interactive Simulation Control

• Square root of two of the average of the densities

• Maximum of the densities

The first aggregation is the average of the density for every cell up to the current point in
time (see Figure 4.5a). With this type of aggregation areas of high densities over a long
period of time are clearly visible. Areas that saw a high density over a short period of
time are less visible, because the high densities get averaged out over time. This allows
for spotting especially dangerous regions where high agent densities persisted over a long
period of time.

A variant on the previous measurement is the square root of the average. Taking the
square root of the average boosts lower densities and makes them more visible. This is
useful if the user wants to keep track of both big and small congestion.

The third option is displaying the maximum of the densities up to the current point in
time (see Figure 4.5b). In our system this is called "Agent Tracing", because only areas
that where never visited by agents show up as withe, all other areas yellow to black. In
contrast to that the average method might have areas that are white, although agents
walked over them. This happens because low density values can be averaged out if there
is a long enough period with density zero. The advantage of the maximum aggregation
is that the user can still read the original density values - the aggregation just shows the
maximum of all time. When using the average aggregation the resulting numbers are
always lower than the maximum of the same region and this might make high density
areas appear less dense.

4.1.3 Agent Flow Visualization

In order to analyze the movement of all agents, selecting all of them at once is not very
useful, because the scene becomes hard to read due to visual clutter. All the windows
and path-lines make it really hard to interpret the overall flow. Cornel et al. [CKB+16]
solved this. They propose an algorithm to automatically generate adaptive flow maps
out of a given data set. The first step is to create a zonation of the domain. This splits
the domain into semantically relevant zones. In 2D an automated zonation is difficult
and it might have to be done manually. The next step is to count the flow of agents from
one zone to another. With this data a directional graph can be computed where zones
are nodes and adjacent zones have weighted edges connecting them. This graph is then
visualized as points and arrows. The thickness of the arrows represents the flow between
the points which are also scaled to encode the number of agents passing through them.
An implementation of this algorithm has been integrated with our simulation to provide
additional information about agent movement.

46

4.2. Visualizations and Interactions in Visdom

4.2 Visualizations and Interactions in Visdom

The plugin we developed can be used within the simulation platform Visdom [vis]. In
the following we will talk about some general functions of Visdom and how we composed
them in order to create a work flow that helps the user achieving their desired goal.

4.2.1 Graphical User Interface

The user has to interact with the system via the graphical user interface (GUI). The
application has two modes: an edit mode and an analysis mode which is the default one.
In order to switch to the edit mode the user has to check the "edit mode" check box -
only in the edit mode it is possible to edit the walls or add new agents. If in edit mode
the floor visualization changes from the density field to a custom image. This image, e.g.,
a floorplan or a map, can be used as a guide for the walls. Alternatively a shape file can
be used to generate the walls.

Figure 4.6 shows the layout of the application: The user has four windows (some
containing tabs) at his disposal. The biggest central window is the scene view. This view
shows a 3D rendering of the simulated world at a certain point in time to the user. It also
has a legend on the lower left for the density map, tools for creating new walls/agents
etc. on the lower right and camera controls and edit tools on the upper left.

The window at the bottom shows the time line tool that controls the current time via
the red cursor. It also offers controls for changing the current branch of the simulation
or creating a new one.

At the top right the settings window contains all important settings regarding the
simulation model or the terrain. Right below it the plotting window is displayed that has
three tabs: an overview tab summarizing some important statistics like the velocity of
the agents and two plotting tabs showing plots of the selected agents and measurement
areas.

Visdom [vis] also has some features and techniques that help the user to make sense of
the generated data and interact with them. It also offers a way to model uncertainty.
This is explained in a more in-depth fashion in papers by Ribičić et al. [RWF+13][?]. We
give a brief overview of the system here in the context of pedestrian simulation.

A key concept is the usage of tracks and ensembles. A track is a time line consisting of
multiple time steps or frames that represent the state of the simulation at a certain point
in time. A cursor shows where the simulation is in time and the cursor can also be used
to change the time in the simulation. An ensembles consists of multiple tracks that all
represent a certain type of uncertainty in the simulation. For example, the number of
agents might be different in each track of an ensemble or a simulation parameter might
change. The user can then switch between the different tracks by simply clicking on
them. This makes it easy to compare different scenarios with each other.

47

4. Visualization and Interactive Simulation Control

Figure
4.6:

T
he

generallayout
ofthe

G
U

I

48

4.2. Visualizations and Interactions in Visdom

It is also possible to make changes to the boundary conditions of the simulation after a
certain amount of simulated time has already passed, e.g., add an additional wall to block
a corridor, and view the consequences of them. This is done via branches. Branches
originate from a certain track at a certain point in time and create a new track starting
at that same moment in time. The new track inherits all settings and objects from the
parent track, so nothing differs at first. Then the user can make some changes to the new
track. If a change needs to be made to an already existing object, the object first has to
be copied to the current track using the "Copy to Track"-tool. The simulation can then
be computed for the branch and the effects can be compared to the original scenario.

As discussed in the last section, methods from information visualization were leveraged:
linking and brushing. Selecting an agent is linked to the diagram window and tracks may
be brushed for temporal selections. It is also possible to brush multiple tracks at once -
the diagram in the diagram window will plot lines for each track.

4.2.2 Setting up a scenario

When setting up a scenario we have to distinguish between a synthetic scenario or a
real-world scenario. In a synthetic scenario the user can either use a flat terrain or a
synthetic heightmap for the ground. In a real-world scenario the user might want to
import geographical data to generate a heightmap out of that. In this case a map of the
region is shown on top of the terrain and the user gets the option to import building
boundaries to automatically generate obstacles so people might walk the streets. All
settings can be made in the settings window that is docked to the side of the scene view.
In a second tab of this window, parameters of the simulation may be adjusted.

It is then possible to adjust the dimensions of the simulation domain. Now agents, targets,
and obstacles may be added to the simulation. In this example the walls are drawn first.
Walls can either be drawn as free-form curves or as polygon lines. If using either of these
tools, the curve can be selected and exact coordinates may be entered for the control
points. Additionally the edit-tool can be used to move control points and to edit them on
the fly. The free-form curve also offers handles to adjust the tangent at a control point.
As discussed before, in order to help the user with creating real world-scenarios overlay
images can be imported and are displayed instead of the floor color/map in edit mode.
The user can then trace lines of obstacles (e.g., walls) to set up the scenario. Doors can
either be modeled as gaps in the walls or with the door tool that cuts out a piece of the
wall to make room for the agents.

All controls for drawing lines are also applicable to polygons. Also as discussed in the
previous chapter agents may be created by placing them individually, using a spawn
area where they will instantly spawn in one burst or by placing an emitter that will add
agents to the simulation over time. Targets are also created by drawing polygons and
assigning names to inform the agents where to go. Each group of agents may also be
colored, so they can be distinguished.

49

CHAPTER 5
Implementation

5.1 Visdom
The software we were using as a framework is called Visdom [vis] and can be understood
as a simulation and visualization tool. This framework had not been implemented during
the course, it was re-used. In this section we will explain important concepts of Visdom
and in Section 5.2 we will talk about the actual implementation that had been done
during this thesis.

In Visdom each scene that is created can have very different capabilities. A scene
contains not only the setup of the boundary conditions, like for example where houses or
pedestrians are placed, it also contains a script that controls what is simulated in the
first place and how it is displayed. So although Visdom is written in C++ and our plugin
is written in C++ as well, the script contained in the scene is written in a graphical
programming language called Data Flow Diagram.

5.1.1 Data Flow Diagram - A Graphical Programming Language

The Data Flow Diagram is a graphical programming language. A key concept of this
programming language is the data flow. The data flow describes where data is transferred
from and to. For example if we have a command that creates a mesh and a command to
render a mesh we can set up the data flow between these two commands, so the mesh
gets rendered.

This data flow is visualized by a directed graph where every node is a command and
edges between the nodes control the data flow. Each node in this graph has incoming
edges and outgoing edges. Incoming edges (input) are located on the left side of the
node and outgoing ones (output) are located on the right. Each node additionally has
settings that may alter the behavior of a node. Nodes offer connection points on the left
and right side of the node where edges can start or end. See Figure 5.1 for an example

51

5. Implementation

Figure 5.1: A single node

of such a node. The basic idea is that each node creates and/or consumes data that is
passed along the edges between two nodes. Not all inputs of a node need to be connected
to an output of another node - some inputs are optional and can be left unconnected.

The graph does not model a control flow - this means that the programmer cannot define
the order of execution of commands (nodes) explicilty. The system starts with nodes that
have no inputs and continues with executing commands that have all input data until all
nodes have been executed. A more in-depth explantion of the system can be found in
the publication of Benjamin Schindler et al. [SWR+12]. In large graphs rendering all
edges might lead to situations where the programmer has a hard time identifying which
nodes are connected to each other. For a better visibility in large graphs edges can also
be hidden. In this case an icon at the connection point indicates this fact and the edge
reappears as long as the mouse cursor is hovering over the connection point.

Figure 5.2 shows an example of a simple data flow. This simple data flow will just
produce an immobile, hovering agent in an otherwise empty scene. On the far left three
nodes without inputs can be seen - they are called producer nodes. Each of these nodes
creates a mesh of a certain color. Because an agent consists of three basic shapes (2 cones
and one sphere, see section 4.1.1) we need three producer nodes for the primitive meshes.
The mesh of each producer is then passed on to the "Append Meshes" node. This node
then merges the three meshes into a single one and passes the result to the "OpenGL"
node that finally renders the scene. The control flow is implicit, because a node always
needs the data of all outputs of other nodes connected to this node’s inputs in order to
process. So the "OpenGL" node requests the "Append Meshes" node to deliver the data,
which in turn has to request the data of all three producers. As the "Append Meshes"
node does not care, which primitive it will get first, the three producers may work in
parallel. When all of them have delivered, the data flows forward until it reaches the
"OpenGL" node, which consumes it and renders the scene.

The language can be extended by new nodes by writing a node definition and a new
class in C++. The node definition is a configuration file that governs the look, in puts,
outputs and options of a node. The C++ class defines the behavior of the node. That
means the class reads the node input and configuration data, then does some custom
computations and finally sets the node outputs.

52

5.1. Visdom

Figure 5.2: A simple data flow

5.1.2 Data Structures

Visdom provides multiple data structures that can be passed in a Data Flow Diagram.
The most important ones can be seen in the Unified Modeling Language (UML) class
diagram [BJR99] in Figure 5.3 and will be described in the following. Some methods and
parent classes are not included for the sake of clarity.

Eigen

An important external library that provides data structures is Eigen [eig]. It contains
classes and functions for working with vectors and matrices. All referenced vector classes
such as "Vector2d" are part of the Eigen library.The class "std::vector" is a standard
library class for lists and is not part of Eigen.

AbstractData

AbstractData is the base class for all data structures that can be passed from one node to
another in a Data Flow Diagram. it offers methods for caching the data, getting/setting
meta data and cloning.

GPUVector<T>

The GPUVector can be used instead of a std::vector. It offers methods for transferring
the data to the GPU for easy General Purpose Computation on the Graphics Processing
Unit (GPGPU), but it can also be used on the CPU. Because it extends AbstractData,
it can be used to pass a collection of values between nodes in a Data Flow Diagram. The
template parameter T is the type of the contained data.

53

5. Implementation

GridDomain<Dimension>

A GridDomain defines a regular grid in the world of a certain size with a certain cell size.
The GridDomain object itself does not contain any data besides the domain definition.
The actual data is then stored in a separate GPUVector (data vector) of the size of
the cell count of the domain. Each cell is then linked to an index in the vector called
domain index. The data vector is always one dimensional regardless of the dimension
of the domain. This separation of the data vector from the GridDomain containing the
domain definition has the advantage of being memory-efficient. E.g., if there are two
fields, the density field and the time field, only one GridDomain object is needed to store
the domain definition and two data vectors for the actual data.

The domain offers methods for converting positions into domain indices (and the inverse),
intersection tests and checks if the position is still in bounds. The template parameter
Dimension is an integer that defines the number of dimensions of the domain. For better
readability the type GridDomain2D has been defined as GridDomain<2>.

Labels

Labels is a container class for a list of the type of Label. Labels extends AbstractData
and can be used to pass data between nodes in a Data Flow Diagram while Label does
not. The label object contains the actual data: position, icon, and text that should be
displayed in the scene to annotate objects.

Lines

Lines is a list of positions paired with IDs. Each pair of position and ID is called a vertex.
The Lines data structure may hold multiple lines where each individual line has its own
ID. Closed lines are represented by appending a copy of the first vertex to the end of the
list.

MeshInstances

The MeshInstances class stores data about different instances of the same mesh. Instanced
rendering (hardware accelerated rendering of the same model in different positions,
orientations, and scale) is typically used in tandem with this data structure. Each
instance has a transformation that defines its position, rotation, and scale in the world
as well as an id, a group, and additional optional values.

Polygons

A Polygon consists of a list of distinct positions (vertices) of the corners of the polygon,
a list of vertex indices that defines the edges of the polygon and an id. The data is
available both as a list of Polygon2D classes and multiple lists of values (struct of lists).

54

5.1. Visdom

<<Abstract>>

AbstractData

-mId: size_t

-mMetaData: unordered_map<MetaData::Type, any>

-mAttributes: unordered_map<string, shared_ptr<AbstractAttribute>>

-mAttributesMutex: recursive_mutex

<<Abstract>>

AbstractGPUVector<T>

GPUVector<T>

-mData: T

-mCapacity: index_t

-mSize: index_t

GridDomain<Dimension>

-mDim: GridIndexType

-mCellSize: PosType

-mInvCellSize: PosType

-mOrigin: PosType

-mBoundingBox: AlignedBox<double, Dimension>

-mHashValue: string

Labels

Label

-mId: int

-mSubId: int

-mAssigneeId: int

-mPosition: Vector3d

-mFloatingOffset: Vector2d

-mColor: Vector4f

-mProgress: float = 1

-mIconType: int

-mTextureIndex: int

-mText: string

-mTextColor: Vector4f

-mValueDescriptions: vector<ValueDescription>

*

uses for data storage

Lines

-mPositionVectors: vector<shared_ptr<GPUVector<Vector3d>>>

-mIds: shared_ptr<GPUVector<int>>

<<Abstract>>

AbstractDomain

-mPrecision: double

-mValid: shared_ptr<GPUVector<uchar>>

-mCompactValidIndices: shared_ptr<GPUVector<index_t>>

MeshInstances

#mMatrices: shared_ptr<GPUVector<Matrix4d>>

#mIds: shared_ptr<GPUVector<int>>

#mGroups: shared_ptr<GPUVector<GroupInformation>>

#mHashValue: string

#mOptionalComponents: unordered_map<string, shared_ptr<AbstractGPUVector>>

<<Struct>>

GroupInformation

+startIndex: index_t

+numElements: index_t

+id: int

Polygons

-mVertices: shared_ptr<GPUVector<Vector2d>>

-mIndices: shared_ptr<GPUVector<int>>

-mIds: shared_ptr<GPUVector<int>>

-mBox: AlignedBox2d

Polygon2D

-mVertices: vector<Vector2d>

-mBox: AlignedBox2d

-mId: int

-mTransformation: Matrix4d

*

Figure 5.3: The class diagram of Visdom’s most important data structures

55

5. Implementation

5.2 The Pedestrian Simulation Plugin

The pedestrian simulation plugin was created for this thesis and contains the Crowd
Simulation Node. This is a custom node for the Data Flow Diagram and handles the
simulation of the pedestrians. The behavior of a node is determined by a C++ class.
Normally nodes are not affected by the passing of simulated time, but when the node
class extends AbstractSimulationNode then the node has the ability to change its output
based on the simulated time. This is also what we have done with our plugin: we created
a CrowdSimulationNode class which extends the AbstractSimulationNode. We will first
give an overview of how a new time step is computed and then we will go into more
detail.

The implementation of the pedestrian models discussed in chapter 3 is implemented in
the CrowdSimulationExecutor. The CrowdSimulationNode creates an instance of the
CrowdSimulationExecutor and uses it to calculate the next time step in the simulation.
In order to compute the next simulation state we need the boundary conditions of the
simulation. There are two types of boundary conditions: dynamic and static. Dynamic
boundary conditions are changed by the simulation itself. Static boundary conditions do
not change during the simulation unless the user changes them.

There is only one dynamic boundary condition and that is the list of agents. Each time
step the agents of the last step will be the input to the current step. All other inputs
to the simulation node are treated as static. Because static boundary conditions rarely
change, additional data, computed from these inputs, can be cached and reused for future
time steps.

After the inputs are handled the next simulation step can be computed. In a simulation
step first the agents get enriched with additional data derived from the current state,
then the tactical layer is executed. The output of the tactical layer is then taken as
new input to the operational layer which computes the new positions of all agents. The
implementation of each layer of the simulation (i.e., tactical and operational layer) is
hidden behind an interface for better extensibility. At the end agents that have reached
their target are removed from the simulation.

Now we will go into more detail regarding the inputs/outputs of the node, how the inputs
are processed and how the simulation step is computed in detail.

5.2.1 Inputs and Outputs of the Crowd Simulation Node

When using the Data Flow Diagram, the pedestrian simulation is represented by a node.
A description of this node can be seen in Figure 5.4. All inputs except the emitters
are required for the node to function properly. The gridDomain2D and the terrain are
both required to place the agents onto the floor they are walking on. GridDomains are
explained in Section 5.1.2, terrain is a list of heights that create when combined with the
GridDomain a height map. The costField is used in the tactical layer of the simulation to
influence the path finding of the agents. This costField contains a value for each cell of

56

5.2. The Pedestrian Simulation Plugin

Figure 5.4: The inputs and outputs of the crowd simulation node

the simulation domain that will be added to the cost field Fc. This can be used to steer
the path finding algorithm away from certain areas. Negative values are not allowed,
because they are used for impassible fields.

The input lines expects a Lines object that contains all walls/obstacles in the scene.
goalPolygon expects a Polygons-object with all target polygons that the agents have to
reach. agents expects a MeshInstances object with all agents set up for the initial state
of the simulation. The optional components required are listed in Table 5.1 under inputs.
The optional input emitters expects one or more instances of type Emitters. Emitters are
used to generate Agents throughout the simulation and also have to have their optional
components set.

The output agents is the current state of the agents in the simulation. All optional
components are guaranteed to be set - inputs and outputs. The timeField contains the
estimated arrival times for each cell in the domain and is used in the tactical layer to
compute the path of the agents. The timeField is mainly used as a debug output. The
densityField is the field of agent densities in agents/m2 that was used by the tactical
layer. Because the tactical layer computes the density field before agents are moved, the
density field outputted is computed on data of the previous frame. As the time steps
are small the difference between the density fields of two consecutive frames is negligible.
The labels output offers a label with information about each agent in the simulation. It
contains the id, velocity, radius, and preferred speed of the agent.

5.2.2 Node Input Processing

The inputs are passed along to the C++ class CrowdSimulationExecutor. An UML
class diagram of the executor can be seen in Figure 5.5. This diagram shows that the
executor inherits from the AbstractManipulatorSimulationExecutor and implements the
IMeshInstanceEmissionAcceptor interface. The AbstractManipulatorSimulationExecutor
provides the basic skeleton of a simulation executor: hooks for state saving, state retrieval,
setting changes, and doing the simulation. The interface is needed for emitter support.

When processing node inputs, static inputs are just taken as they are and set in the
classes that need them. For example, the input lines contains all lines representing walls
and will be set on the interface of the operational layer. The dynamic input agents is
more sophisticated to process, because it has to be converted from MeshInstances to a

57

5. Implementation

V
i
s
d
o
m

C
o
r
e

<
<
A
b
s
t
r
a
c
t
>
>

A
b

s
tra

c
tS

im
u

la
tio

n
E

x
e

c
u

to
r

#
<
<
a
b
s
t
r
a
c
t
>
>

c
l
e
a
r
S
t
a
t
u
s
(
)
:

v
o
i
d

#
<
<
a
b
s
t
r
a
c
t
>
>

g
e
t
S
t
a
t
u
s
(
)
:

u
n
o
r
d
e
r
e
d
_
m
a
p
<
s
t
r
i
n
g
,

s
h
a
r
e
d
_
p
t
r
<
A
b
s
t
r
a
c
t
D
a
t
a
>
>

#
<
<
a
b
s
t
r
a
c
t
>
>

s
e
t
S
t
a
t
u
s
(
s
t
a
t
u
s
:
u
n
o
r
d
e
r
e
d
_
m
a
p
<
s
t
r
i
n
g
,

s
h
a
r
e
d
_
p
t
r
<
A
b
s
t
r
a
c
t
D
a
t
a
>
>
)
:

v
o
i
d

#
<
<
a
b
s
t
r
a
c
t
>
>

u
p
d
a
t
e
I
n
p
u
t
(
i
n
p
u
t
:
I
n
p
u
t
A
d
a
p
t
e
r
,

u
p
d
a
t
e
A
l
l
:
b
o
o
l
=
f
a
l
s
e
)
:

v
o
i
d

#
<
<
a
b
s
t
r
a
c
t
>
>

u
p
d
a
t
e
S
e
t
t
i
n
g
s
(
s
e
t
t
i
n
g
s
:
S
i
m
u
l
a
t
i
o
n
S
e
t
t
i
n
g
s
)
:

v
o
i
d

+
<
<
a
b
s
t
r
a
c
t
>
>

c
r
e
a
t
e
I
n
i
t
i
a
l
S
t
a
t
e
(
)
:

v
o
i
d

+
<
<
a
b
s
t
r
a
c
t
>
>

a
d
v
a
n
c
e
(
r
e
l
a
t
i
v
e
T
i
m
e
:
d
o
u
b
l
e
)
:

v
o
i
d

<
<
A
b
s
t
r
a
c
t
>
>

A
b

s
tra

c
tM

a
n

ip
u

la
to

rS
im

u
la

tio
n

E
x

e
c

u
to

r

#
c
r
e
a
t
e
I
n
i
t
i
a
l
S
t
a
t
e
(
)
:

v
o
i
d

#
u
p
d
a
t
e
S
e
t
t
i
n
g
s
(
s
e
t
t
i
n
g
s
:
S
i
m
u
l
a
t
i
o
n
S
e
t
t
i
n
g
s
)
:

v
o
i
d

#
u
p
d
a
t
e
I
n
p
u
t
(
i
n
p
u
t
:
I
n
p
u
t
A
d
a
p
t
e
r
,
u
p
d
a
t
e
A
l
l
:
b
o
o
l
=
f
a
l
s
e
)
:

v
o
i
d

-
a
d
v
a
n
c
e
(
r
e
l
a
t
i
v
e
T
i
m
e
:
d
o
u
b
l
e
)
:

v
o
i
d

#
<
<
a
b
s
t
r
a
c
t
>
>

a
d
v
a
n
c
e
A
t
O
n
c
e
(
r
e
l
a
t
i
v
e
T
i
m
e
:
d
o
u
b
l
e
)
:

v
o
i
d

C
ro

w
d

S
im

u
la

tio
n

E
x

e
c

u
to

r

-
m
A
g
e
n
t
s
:

v
e
c
t
o
r
<
s
h
a
r
e
d
_
p
t
r
<
I
A
g
e
n
t
>
>

-
m
G
r
o
u
p
s
:

v
e
c
t
o
r
<
G
r
o
u
p
I
n
f
o
r
m
a
t
i
o
n
>

-
m
G
r
o
u
p
I
d
s
:

v
e
c
t
o
r
<
i
n
t
>

-
m
G
r
o
u
p
e
d
T
D
i
s
t
a
n
c
e
:

v
e
c
t
o
r
<
A
g
e
n
t
T
a
r
g
e
t
D
i
s
t
a
n
c
e
D
a
t
a
>

-
m
T
a
r
g
e
t
S
t
a
r
t
I
n
d
i
c
e
s
:

v
e
c
t
o
r
<
i
n
d
e
x
_
t
>

-
m
T
a
r
g
e
t
I
n
d
i
c
e
s
:

v
e
c
t
o
r
<
i
n
d
e
x
_
t
>

-
s
e
t
A
g
e
n
t
s
(
a
g
e
n
t
s
:
s
h
a
r
e
d
_
p
t
r
<
M
e
s
h
I
n
s
t
a
n
c
e
s
>
)
:

v
o
i
d

-
i
m
p
o
r
t
A
g
e
n
t
s
(
)
:

v
o
i
d

-
h
a
n
d
l
e
S
e
t
t
i
n
g
s
C
h
a
n
g
e
(
)
:

v
o
i
d

-
u
p
d
a
t
e
G
r
o
u
p
I
n
f
o
r
m
a
t
i
o
n
(
)
:

v
o
i
d

<
<
I
n
t
e
r
f
a
c
e
>
>

IM
e

s
h

In
s
ta

n
c
e

E
m

is
s
io

n
A

c
c
e

p
to

r

+
e
m
i
t
I
n
s
t
a
n
c
e
(
i
n
s
t
a
n
c
e
:
M
e
s
h
I
n
s
t
a
n
c
e
,
m
e
s
h
G
r
o
u
p
I
n
d
e
x
:
i
n
t
,

d
e
s
t
i
n
a
t
i
o
n
I
d
:
i
n
t
=
-
1
)
:

v
o
i
d

Figure
5.5:

T
he

class
diagram

ofthe
sim

ulation
executor

58

5.2. The Pedestrian Simulation Plugin

Optional Component Description
Inputs

MAX_SPEEDS The maximum speeds of all agents
RADIUS The radii of all circles representing the agents
COLORS The colors of all agents

TARGET_START_INDICES The start indices of target groups (agents with
the same targets) in the TARGET_INDICES list

TARGET_INDICES A list of indices of polygongs in the goalPolygon
object

Outputs
PREF_SPEEDS The preferred speeds of agents according to the

pedestrian model as a list of scalars
PREF_VELOCITIES The preferred velocities of agents according to

the tactical layer of the simulation as a list of
2D vectors

VELOCITIES The current velocities of agents as a list of 2D
vectors

Table 5.1: The optional components of the MeshInstances object containing the agents

list of IAgents. AgentData implements the IAgent interface (see Figure 5.6). This enables
the usage of software patterns such as Decorators, Adapters and more. Besides methods
for getting and setting data, there are also methods for writing the state of an agent to a
MeshInstances object or copy an agent entirely. A constructor allows an easy conversion
from the MeshInstance object to the AgentData.

Agents with the same targets are bundled up into a group. This grouping is important
for the tactical layer, because most computations in the tactical layer can be shared
between agents with the same targets. For each group a distance and time map has to be
computed. This is a resource intense operation so it is beneficial to have as few groups
as possible.

When the agents change, these groups have to be validated, because there might be
distinct groups with the same targets that need to be merged. These duplicate groups
can occur, because each newly generated agent is automatically placed in its own group.
When this happens the grouping has to be updated. There are three cases where the
agents might change and the grouping might be invalid:

• The user switches branches in the time line

• The user changes the boundary conditions

• An agent is emitted by an emitter

59

5. Implementation

<<Interface>>

IAgent

+getId(): int

+setId(id:int): void

+getPosition(): Vector2d

+setPosition(position:Vector2d): void

+getRadius(): double

+setRadius(radius:double): void

+getVelocity(): Vector2d

+setVelocity(velocity:Vector2d): void

+getPreferredVelocity(): Vector2d

+setPreferredVelocity(preferredVelocity:Vector2d): void

+getMaxSpeed(): double

+setMaxSpeed(maxSpeed:double): void

+getGroupId(): int

+setGroupId(groupId:int): void

+getColor(): Vector4f

+setColor(color:Vector4f): void

+getSlope(): double

+setSlope(slope:double): void

+getAdditionalData(name:string): any

+addAdditionalData(name:string,data:any&): void

+copyToMIs(meshInstances:MeshInstances): void

+copyTo(target:IAgent*): void

AgentData

-mId: int

-mGroupId: int

-mPosition: Vector2d

-mRadius: double

-mVelocity: Vector2d

-mPreferredVelocity: Vector2d

-mMaxSpeed: double

-mPreferredSpeed: double

-mColor: Vector4f

-mSlope: double

-mAdditionalDataMap: unorderedMap<string, any>

<<Struct>>

AgentsMetaData

+mMaxRadius: double

Figure 5.6: The class diagram of an agent

60

5.2. The Pedestrian Simulation Plugin

Read Agent Data Clear State Copy Agents to State

Copy Targets to State Update Grouped Data

(a) Set agent state

Find Groups with Identical

Targets & Merge them

Re-Order Agents to

fit the Merged Groups
Copy Agents to StateClear State

.

(b) Update on agent boundary conditions

Find an Existing Group

with Equal Targets
Create a New Group

No Group Found

Add the Agent to the Group
Group Found

Create new Agent

Determine Randomized

Values

.

(c) Integrate an emitted agent

Figure 5.7: Activity diagrams describing agent creation and import

When the user switches branches, a state is set. In this case the groups do not need to
be validated, because they were already validated, as the state has been a valid state
before. So the only task left is copying the agents and targets to the state (Figure 5.7a).

When boundary conditions change, e.g., new agents get added to the world (see Fig-
ure 5.7b), the grouping needs to be reevaluated. Here it is possible that there are more
groups than needed. The first action is to look for groups with identical target sets and
merge these groups. The way in which the grouping is realized may demand a re-ordering
of agents. Each group is defined by a start- and an end-index in the agent list. So if
two groups that are not stored back-to-back, the second group has to be moved to the
end of the first group and the end-index has to be updated to include the new members.
Other groups that are behind the modified group also change, because the indices of
their members change. After all possible merges are finished, the agents are copied to
the state.

Agents can also be created (emitted) by emitters. Emitters are created in the EmitterEx-
ecutor and then passed along via the data flow to a class that accepts emitted instances.
The base class is the AbstractEmitter, the derivatives mainly define the shape of the
emitting area. The emitter shape can be a polygon, a line, or a point for example.

If an agent is emitted by an emitter, the executor expects all required fields to be set, so

61

5. Implementation

<<Interface>>

ValueProvider

+getValue(): any

ConstantValueProvider<T>

-value: T

+getTypedValue(): T

RandomValueProvider<T>

-mFrom: T

-mTo: T

+getTypedValue(): T

+setFrom(from:T): void

+setTo(to:T): void

Figure 5.8: The class diagram of the value providers

it can create a MeshInstance representing the agent. This is a problem for our agents,
because we have some values that should vary between emitted agents, like the radius
for example. In Order to enable the emitter to create randomized properties for agents
a new interface is introduced. The ValueProvider is that interface and it has exactly
one method for returning a value (see Figure 5.8). Two implementations are available:
the first one just returns a constant value. This is used for the color of an agent as it
is defined per emitter. The other implementation is the RandomValueProvider, which
returns a pseudo random number between the defined boundaries. This is used for agent
specific values like the radius and the maximum speed.

Figure 5.7c shows the activity diagram for the creation and integration of an agent into
the simulation. After the creation it is determined if there is already a group that has
the same targets as the emitted instance. If this is the case, the new instance is assigned
to the existing group, in the other case a new group is created.

Until now we discussed the three ways agents may be added or removed from the
simulation. As discussed before, if agents are added or removed the grouping might
change and the cached data for the groups has to be recomputed. This cached data
contains the distance field and its derivative for each group. The class that stored
the cached data is called AgentTargetDistanceData. It is updated by calling the static
updateGroupedData method. This method computes the distance field and its derivative
for each group in parallel. A diagram of this class can be seen in Figure 5.9. This data is
used in the tactical layer to compute the preferred velocities of the agents.

Now all inputs are set and the simulation is ready to compute the next simulation state.
Each layer of the simulation is defined by an interface (see Figure 5.11), so other models
may be implemented besides the existing ones. In order to compute the next simulation
state first the slope of the floor along the agent’s velocity vector has to be computed,
so this information can be used in the simulation layers. Also the biggest radius of all
gents is computed and stored in the AgentsMetaData object. Then the tactical layer is
executed and its result is passed into the operational layer which moves the agents. At
the end all agents overlapping with one of their targets are removed from the simulation.

62

5.2. The Pedestrian Simulation Plugin

AgentTargetDistanceData

+groupId: int

+distanceField: GPUVector<double>

+distanceFieldDerivative: GPUVector<Vector2d>

+setDataSize(dataSize:index_t): void

+updateGroupedData(groups:vector<GroupInformation>,

 targetStartIndices:vector<index_t>,

 targetIndices:vector<index_t>,

 groupedData:vector<AgentTargetDistanceData>,

 obstacleLines:shared_ptr<Lines>,

 targetPolys:shared_ptr<Polygons>,

 gridDomain:shared_ptr<GridDomain2D>): void

Figure 5.9: The class diagram of the grouped distance data

Compute Slope
Copy the Input to the

Writalbe Data

Compute the Preferred

Velocities

Make the Result the

New Read-Only Data

Copy the Read-Only

Data to the Writable Data

Move the Agents to Their

New Position

Remove Agents That Overlap

Their Targets

Recompute Group

Information

Figure 5.10: The activity diagram of the simulation executor’s step computation

The agents are stored twice during the simulation, i.e., in a read-only variant and a
writable variant. The read-only variant represents the state of the agent at the start
of the simulation frame while the writable variant represents the end of the simulation
frame, i.e., the result of the simulation step. This enables a multithreaded implemen-
tation of the algorithm where each agent’s new position is calculated in parallel. The
CrowdSimulationExecutor handles these two states. As seen in the UML activity diagram
in Figure 5.10, the executor fist computes the slope at each agent’s position and saves it.
Then it sets the modified data as the new read-only data and initializes the writable list
with deep copies of the agents. In the next step the preferred velocities are computed by
the tactical layer. Because our new current state is now in the writable data, we have to
swap and copy it like before. Then the agents are moved to their new position by the
operational layer and the executor checks if they overlap with any of their targets. If so,
the agents are removed. After that the groups data structure has to be rebuild to make
up for the removed agents.

The tactical layer contains two interfaces. The ITacticalModel represents the model

63

5. Implementation

<<Interface>>

IDensityComputation

+computeDensity(domain:shared_ptr<GridDomain2D>,

 readAgents:vector<shared_ptr<IAgent>>,

 densityData:shared_ptr<GPUVector<double>>): shared_ptr<SparseData<DensityCell,

 index_t>>

<<Interface>>

ITacticalModel

+computePreferredVelocities(readAgents:vector<shared_ptr<IAgent>>,

 writeAgents:vector<shared_ptr<IAgent>>): void

+setDensityComputation(densityComputation:shared_ptr<IDensityComputation>): void

+getDensityField(): shared_ptr<GPUVector<double>>

+setCostField(costField:shared_ptr<GPUVector<double>>): void

(a) The interfaces of the tactical layer

<<Inteface>>

ICollisionAvoidance

+move(deltaTime:double,agents:vector<shared_ptr<IAgent>>,

 currentIndex:int,agent_out:shared_ptr<IAgent>,

 agentMetaData:AgentsMetaData): void

+setStaticObstacles(lines:shared_ptr<Lines>): void

+setWallThickness(thickness:double): void

<<Interface>>

IOperationalModel

+move(deltaTime:double,readAgents:vector<shared_ptr<IAgent>>,

 writeAgents:vector<shared_ptr<IAgent>>,

 agentsMetaData:AgentsMetaData): void

+setCollisionAvoidance(collisionAvoidance:shared_ptr<ICollisionAvoidance>): void

+setPedestrianModel(pedestrianModel:shared_ptr<IPedestrianModel>): void

<<Interface>>

INeighborQuery<T>

+getNeighbours(center:Vector2d,radius:double): shared_ptr<INeighborQueryIter<T>>

+clear(): void

+add(position:Vector2d,data:shared_ptr<T>): void

<<Interface>>

IPedestrianModel

+computeModelSpecificValues(agents:vector<shared_ptr<Iagent>>,

 agent_out:shared_ptr<IAgent>,

 currentIndex:int): void

(b) The interfaces of the operational layer

Figure 5.11: The class diagrams concerning the simulation interfaces of the tactical and
operational layer

64

5.3. The Data Flow Diagram of the Pedestrian Simulation

that should be used to compute the preferred velocities for the agents and its method
computePreferredVelocities offers this functionality. The tactical model may also need
some additional parameters like the cost field or the density computation method to use
and has methods to set these parameters. The IDensityComputation interface is used by
the ITacticalModel for computing a density field.

The tactical model has two implementations as seen in Figure 5.12. The QuickestPath-
Model is an implementation of Tobias Kretz et al.’s algorithm [KGH+11] that has been
extended to handle arbitrary cost fields. The ShortestPathModel just uses the static
distance map to assign preferred velocities.

The operational layer is represented by the IOperationalModel. Its method move moves
the agents as close as possible in the direction of their preferred velocity while also
ensuring that they do not collide with other agents or obstacles. It may utilize an
IPedestrianModel. This model can compute additional values that may be used in the
collision avoidance. In our case we implemented the pedestrian speed model described in
Section 3.2.2 using this interface. The IOperationalModel delegates the moving of the
agents to the ICollisionAvoidance interface which offers a move method for single agents.
In our case the ICollisionAvoidance is implemented by the ORCA algorithm discussed
in Section 3.2.1. While computing the new position of an agent it is very likely that its
neighbors are needed. The INeighborQuery offers an iterator to go through all neighbors.

5.3 The Data Flow Diagram of the Pedestrian Simulation

In order to utilize the simulation data the user has to able to view and interact with
it. As discussed in Section 5.1.1 Visdom offers the Data Flow Diagram as a graphical
scripting language to build applications. Figure 5.13 shows an overview of the diagram
used to create the presented application. The big boxes are groups that contain nodes.
Because of the complexity of the diagram each group will be discussed individually.

Terrain

The most important node in the group shown in Figure 5.14 is the Synth Grid node,
which defines the domain and the regular grid inside the domain. The user can edit it
using the Grid Range 2D node, which provides a way to change the size and position
of the domain via the GUI. The height field defined on the domain can be generated in
three ways: a flat height field, a procedurally generated one, or a height field from Geo
Information System (GIS) data. The Terrain Choice passes the height field selected by
the user on to the other nodes like the simulation node or the OpenGL node. The node
Heightfield Derivative node computes the derivative of the field, so the output is a vector
field. The following three nodes convert the vector field into a scalar field by computing
the magnitude of the vectors and scaling the results by a constant. This scalar field is
then pass on to the simulation as the cost field for the tactical layer.

65

5. Implementation

<<Interface>>

ITacticalModel

+computePreferredVelocities(readAgents:vector<shared_ptr<IAgent>>,

 writeAgents:vector<shared_ptr<IAgent>>): void

+setDensityComputation(densityComputation:shared_ptr<IDensityComputation>): void

+getDensityField(): shared_ptr<GPUVector<double>>

+setCostField(costField:shared_ptr<GPUVector<double>>): void

ShortestPathModel

-mDomain: shared_ptr<GridDomain2D>

-mGroupedTDistances: vector<AgentTargetDistanceData>

-mGroups: vector<GroupInformation>

-mDensityComputation: shared_ptr<IDensityComputation>

-mDensityMap: shared_ptr<GPUVector<double>>

-mCostField: shared_ptr<GPUVector<double>>

+getDomain(): shared_ptr<GridDomain2D>

+setDomain(domain:shared_ptr<GridDomain2D>): void

+getDensityComputation(): shared_ptr<IDensityComputation>

+setDensityField(densityField:shared_ptr<GPUVector<double>>): void

+setCostField(costField:shared_ptr<GPUVector<double>>): void

QuickestPathModel

-mDomain: shared_ptr<GridDomain2D>

-mGroupedTDistances: vector<AgentTargetDistanceData>

-mGroups: vector<GroupInformation>

-mDensityComputation: shared_ptr<IDensityComputation>

-mDensityMap: shared_ptr<GPUVector<double>>

-mCostField: shared_ptr<GPUVector<double>>

-mTimeField: shared_ptr<GPUVector<double>>

-mG: double

-mH: double

+mDistanceFieldComputer: DistanceFieldComputer

+getDomain(): shared_ptr<GridDomain2D>

+setDomain(domain:shared_ptr<GridDomain2D>): void

+getDensityComputation(): shared_ptr<IDensityComputation>

+setDensityField(densityField:shared_ptr<GPUVector<double>>): void

+setCostField(costField:shared_ptr<GPUVector<double>>): void

+getTimeField(): shared_ptr<GPUVector<double>>

+setTimeField(timeField:shared_ptr<GPUVector<double>>): void

+getG(): double

+setG(g:double): void

+getH(): double

+setH(h:double): void

Figure 5.12: The class diagram of the tactical model

66

5.3. The Data Flow Diagram of the Pedestrian Simulation

Fi
gu

re
5.

13
:

A
n

ov
er

vi
ew

of
th

e
da

ta
flo

w
di

ag
ra

m
of

th
e

pe
de

st
ria

n
sim

ul
at

io
n

67

5. Implementation

The GIS data needs a coordinate transformation from the coordinates in the GIS file to
the simulation domain. This is provided by the Coordinate System node, which is used
by the GIS terrain and buildings. The user may choose if the GIS buildings should be
imported, which also then need to be transformed to fit to the ground.

Walls

The walls (see Figure 5.15) come from different sources. User-drawn walls are generated
in the WallLines node. The edges of the domain are converted to walls and optional
buildings can be imported too. All these lines are merged and then the doors are cut
out in the Doors node. In the top path (annotated with Adapt Lines for Edit Mode) the
lines are then transformed for the edit mode so that they follow the shape of the terrain.

In the lower path (annotated with Extrude Lines to Form Walls) the wall lines are
parallelly shifted and combined to polygons to form the base of the wall. Then these
polygons are extruded to create walls instead of just a simple line.

Targets

Target creation can be seen in Figure 5.16. The target lines are drawn by the user and
this is handled in the Target Lines node. These lines have to be closed, so the following
two nodes Target Lines to Polygons and Polygons to Lines take care of that by first
converting the lines into a closed polygon and then back into lines. Lastly these lines
need to be transformed in a way that the don’t clip through the terrain.

Agent Creation

Figure 5.17 shows the group that is responsible for the agent creation. There are three
nodes of interest here: the Append Meshes to Agent, Mesh Repeater, and the Agent
Emitters. The Append Meshes to Agent-node takes three primitives (two cones and a
sphere) and creates a single mesh that represents an agent. This mesh is then used in
the OpenGL-node to render them.

The Mesh Repeater is in charge of creating agents in bursts. This means that these
agents all appear in the scene at the same time. This is useful to initialize simulations.
In order to place the agents on the ground, the domain of the terrain and the height
field are needed. To place agents inside of regions, the lines input is required. Each line
corresponds to a burst of agents in the simulation and this burst can be configured to
change the density or parameters of the spawned agents. Because the agents need a
target, the target lines are connected to the Mesh Repeater.

The Emitter Creator-node takes care of creating emitters that will in turn emit agents
over time. This node also uses lines to define the area where agents should be emitted
and it also requires the target lines to assign agents to targets.

68

5.3. The Data Flow Diagram of the Pedestrian Simulation

Fi
gu

re
5.

14
:

T
he

D
at

a
Fl

ow
D

ia
gr

am
of

th
e

te
rr

ai
n

69

5. Implementation

Figure 5.15: The Data Flow Diagram of the walls

Figure 5.16: The Data Flow Diagram of the targets

70

5.3. The Data Flow Diagram of the Pedestrian Simulation

Figure 5.17: The Data Flow Diagram of the agent creation

Water Simulation

In Figure 5.18 the domain of the pedestrian simulation is converted to a domain of lower
resolution as the flood simulation does not need such a high-resolution grid to work on.
The simulation is done in the Shallow Water node which then outputs several data sets
like the domain of the water, the height-field, etc. The Shallow Water Conversion node
converts these sets into a renderable representation. The domain-output of the Shallow
Water node is also used in the pedestrian simulation to determine flooded areas.

Pedestrian Simulation

The most important node in Figure 5.19 is the Crowd Simulation node. As described
in previous sections, it computes the simulation. The other nodes in the figure process
the agents as outputted by the simulation node. The two nodes at the bottom left first
convert the agents into positions and then compute the density map. Additionally the
current speed and color are extracted for each agent as well.

Terrain Visualization

The terrain visualization group handles the coloring of the terrain, the agents are moving
on, and can be seen in Figure 5.20. Each data field to display has its own Transfer
Function node which handles the mapping from a numeric value to a color. Some
fields are computed here using data from the simulation group, e.g., the Density Field
Average Aggregation node computes the average of all past density fields up to this point.

71

5. Implementation

Figure
5.18:

T
he

D
ata

Flow
D

iagram
ofthe

w
ater

sim
ulation

72

5.3. The Data Flow Diagram of the Pedestrian Simulation

Figure 5.19: The Data Flow Diagram of the pedestrian simulation

The Domain Visualization Choice node lets the user choose which of the predefined
visualizations to use. The bottom three nodes enable the user to display a custom image
on the terrain, e.g., a floor plan. The Cut Image node can be used to position and scale
the custom image on the terrain by altering the uv-coordinates of the image texture,
effectively cutting the image, so it only displays the relevant part. The image texture is
then rendered on the terrain.

Agent Visualization

Figure 5.21 shows the group that handles the visualization which is applied to the agents.
The transfer functions here should only map the values to colors between white and
black as this color is then multiplied with the base color of the agents to adjust their
brightness. The Agent Visualization Choice node lets the user choose which of the two
measurements should be displayed as brightness: the density or the speed.

Plotting

The plotting group can be seen in Figure 5.22 and shows how the diagrams Selected
Agents Velocities, Agent Count in Region, and Agent Density in Region are being made.
At the top of the group the Selected Agents Velocities plot is handled. An Object Selection
node filters agents by user selection and passes it on. Next the velocities of these agents
are extracted in the Value Filtering by Indices node at the top. Because the Data Series

73

5. Implementation

Figure 5.20: The Data Flow Diagram of the terrain visualization

74

5.3. The Data Flow Diagram of the Pedestrian Simulation

Figure 5.21: The Data Flow Diagram of the agent visualization

node expects a constant number of agents being displayed, we have to insert a zero value
for each agent that, first, has been selected by the user and second, has reached its target
and is no longer part of the simulation. The Missing Value Insertion node takes care of
this and the Data Series node is able to build a series out of the data that can then be
displayed by the Agent Selection Plotting node as a graph.

The Agent Count in Region and Agent Density in Region plots are similar to the above,
but they use the Positions Filtering by Polygons node to extract the indices of the agents
in regions defined by the user. Using the indices the number of agents inside the regions
is computed. For the Agent Count in Region diagram these counts are forwarded to the
Data Series node in order to create a data series that can be rendered. For the Agent
Density in Region diagram the inverse of the region’s area is multiplied with the agent
count in the Normalize Agent Count node to obtain the agent density. Then this density
is also passed on to a Data Series node and the generated series is then rendered.

75

5. Implementation

Figure 5.22: The Data Flow Diagram of the plotting

76

CHAPTER 6
Validation and Case Studies

The model has been validated by test cases from RiMEA [rim]. This document is used
by German authorities to offer a standardized way to validate evacuation simulations:

The methodology for a simulation-based evacuation analysis outlined in this guideline is
designed to permit assessment of the effectiveness of an escape and rescue concept as part
of a built environment. (RiMEA version 3.0.0 [rim], page 6)

Besides the validation provided by RiMEA, we also wanted to test how a user would
interact with the system, so we created a real-world scenario at the Tanzbrunnen in
Cologne. Here visitors of an open air concert are evacuated plus different scenarios are
being simulated and tested against each other.

We will start with the validation by the RiMEA test cases and then continue with the
real-world scenario.

6.1 RiMEA Test Cases

6.1.1 Test Case 6

In this test case 20 agents have to walk around a corner without passing through a wall.
The system passed this test as shown in Figure 6.1. This figure also shows that agents
walk in pairs of two around the corner rather than forming a line at the corner thanks to
the used tactical model.

6.1.2 Test Case 9

Here 1, 000 agents have to leave a public space through four doors (see Figure 6.2) and
then the test is repeated with only two open doors. In case of the four open doors the
evacuation should be nearly twice as fast as with only two open doors. In our simulation

77

6. Validation and Case Studies

Figure 6.1: RiMEA Test Case 6 after 6 seconds

the first case had an evacuation time of 206s and the second case an evacuation time of
428s. This means that the scenario with two open doors requires 208% of the time of the
case with four open doors, which satisfies the testing criterion.

6.1.3 Test Case 10

In this case 23 agents are distributed among 12 rooms that are connected by a corridor
with two exits. The agents in the four rightmost rooms have to leave through the right
exit while all other agents have to leave through the top exit (see Figure 6.3).

6.1.4 Test Case 11

A large room filled with 1000 people shall be evacuated through two doors. All agents
approach the two doors from the left. The expected result is a congestion at the first
door, but some agents are using the alternative (more distant) exit. As can be seen in
Figure 6.4 with our approach agents utilize both doors.

78

6.1. RiMEA Test Cases

Figure 6.2: RiMEA Test Case 9 Setup with four open doors. For the other test case the
lower two doors are closed.

79

6. Validation and Case Studies

Figure 6.3: RiMEA Test Case 10 Path Traces

6.1.5 Test Case 12

Two rooms are connected by a one meter wide corridor and 150 persons have to walk
through Room 1, the corridor and then cross Room 2 to reach the final exit. The expected
result is a congestion when the agents try to enter the corridor, but none at the exit of
Room 2 as the flow is already constricted by the narrow corridor.

6.1.6 Test Case 15

The behavior of agents when walking around corners is tested in Test Case 15. Three
corridors are constructed. One with a bend, a straight one that has the same length
as the innermost (shortest) path of the bent corridor and a second straight one with
a length equal to the outermost (longest) path of the bent one. The corridor with the
corner should be evacuated before the long straight, but after the short straight one has
been. Our tests showed that this is the case with our approach.

6.2 Variations on the Tests

We conducted the RiMEA test cases also with different settings. The first run was the
default run with the default settings: enabled speed model and quickest path model
for the tactical layer. Then one run with disabled speed model and quickest path was
simulated. The last variation was configured to run with enabled speed model, but with a
simple shortest path model for the tactical layer. The differences between these variations

80

6.2. Variations on the Tests

Figure 6.4: RiMEA Test Case 11 after 50 seconds

Test Number Evacuation Time (s)
6 21.2
9 - 4 Doors 206.4
9 - 2 Doors 428.2
10 19.6
11 318.8
12 155.1
15 96.2

Table 6.1: Simulated evacuation times for the RiMEA Test Cases

81

6. Validation and Case Studies

Figure 6.5: RiMEA Test Case 12 Setup

Figure 6.6: RiMEA Test Case 15 Setup

82

6.2. Variations on the Tests

(a) The default variation with the speed
model enabled and the quickest path model

(b) Variation 2 with the speed model dis-
abled and the quickest path model

(c) Variation 3 with the speed model enabled
and the shortest path model

Figure 6.7: A comparison between three different setting variations for Test Case 6.

are consistent throughout all tests. Without the speed model agents evacuated the rooms
much quicker than with it. This is expected as the speed model only decreases the speed
of pedestrians. Figure 6.7 shows a comparison between all three variants on Test Case 6.

With the shortest path model instead of the quickest path model agents created seemingly
unnecessary congestion and for example did not walk through the second door in Test
Case 11 as can be seen in Figure 6.8.

83

6. Validation and Case Studies

Figure 6.8: RiMEA Test Case 11 with the shortest path model

6.3 Real World Case Study

6.3.1 Setup

To test the system in a real-world scenario the Tanzbrunnen in Cologne was picked as a
location for an imaginary open-air concert. The system was given the height data of the
Tanzbrunnen and its immediate surroundings. With the help of a plan all obstacles have
been added by projecting this plan onto the terrain and redrawing the lines by hand.
The plan also had all of the emergency exits marked, so all of them were modeled as
open. The evacuation zones for the pedestrians were located in the park to the north
and on the street to the south of the event site. See Figure 6.9 for the overlay in the edit
mode that was used to draw the walls.

The official homepage of the Tanzbrunnen [tan] states that a maximum of 12, 500 visitors
are permitted on an area of 30, 000m2, so we added ≈ 12, 000 agents to the scenario. After
viewing photographs and videos of previous events that happened at the Tanzbrunnen, a
pattern emerged in the density of the crowds. As one would expect the most dense place
was right in front of the stage and the density decreased with respect to the distance to

84

6.3. Real World Case Study

Figure 6.9: The overlay of the floor plan of the area in edit mode

the stage. This was also reflected in the setup of the simulation.

6.3.2 Results

The evacuation took 400 seconds (6,66 minutes). In this time all pedestrians reached
the designated evacuation zones (targets). Figure 6.10 shows agents evacuating and in
Figure 6.11 the time field of the simulation can be seen.

Subfigure 6.11a shows the unaltered time field of the simulation. This visualizes the
expected time an agent needs to reach an exit without any other agents blocking it. It is
very useful to find regions that are far away from exits. In our case the region in front
of the stage and to the side of the food court are the regions with the highest expected
times of around 130 (unitless).

Subfigure 6.11b shows the time field in the middle of the simulation. The time field has
changed to accommodate for the agents, because large densities of agents might indicate
a congestion or at least a slowdown. Here the largest values are around 340 in front of
the stage. This estimation of the evacuation time changes with each time step, because
the density of the agents is taken into consideration.

A second variation of this scenario was made and can be seen in Figure 6.12. In this
version all small exits next to the stage are blocked, so only the large exits remain. The
Tanzbrunnen itself is sealed off additionally so the little pockets, shown in the figure as
red striped areas, are not accessible any more.

85

6. Validation and Case Studies

Figure 6.10: The evacuation of the Tanzbrunnen. The number of agents at the bottom is
the current number of agents that have not reached an exit yet. At the bottom right the
passed simulated time since the beginning of the simulation is shown.

86

6.3. Real World Case Study

(a) The unaltered time field at the end of the simulation (397s) - it becomes the distance field.

(b) The time field during the evacuation (138.5s). Please note how the distances changed compared
to the distance field in (a).

Figure 6.11: The time field at different times of the evacuation of the Tanzbrunnen.
87

6. Validation and Case Studies

Figure 6.12: The setup of the second variation of the scenario: The new walls are colored
in blue while the remaining exits are visualized by green arrows and green lines shaped
like trapezoids with the longest side missing. All blocked small exits and small pockets
are colored red striped.

This scenario was created based on the data of the first simulation. As can be seen in
Figure 6.13 there are very high concentrations of pedestrians in front of the secondary
exits. In comparison, the two main exits have a relatively low density. The question was:
if the secondary exits are sealed off and only the main exits remain will this decrease the
maximum density overall?

The result can be seen in Figure 6.14. While the maximum density at the outer exits
hasn’t changed compared to the previous simulation, the maximum density at the main
exits has changed significantly. With the secondary exits closed the two main exits get
totally overcrowded and have a maximum density that is far higher than 6 agents per m2.
In particular, the top exit seems to be very dangerous as it’s corridor starts very wide
and then narrows. This seams to increase the pressure on the agents at the front, because
of the greater mass of agents pushing from behind. Also in the tests this exit was the
one with the highest level of density.

Still some changes worked better than in the variant with all exits opened. Blocking off
dead ends helped agents not getting stuck there.

88

6.4. Performance

Figure 6.13: The maximum density of agents over the entirety of the first simulation.
The unit of the legend is in agents per m2

6.4 Performance

Performance is important for an interactive simulation, because the user has to be
able to see the effects of her/his changes as fast as possible. In this section we will
discuss performance measurements and results. Three values were measured: the overall
computation time of a simulation step, the time it took the tactical model to finish its
computation and the time it took the operational model to finish. With these values,
the overhead may be computed. This is the time that is not spend within the models,
but with tasks like preparing data or copying data. It is always very close to 0ms. All
tests were conducted on an Intel(R) Core(TM) i7-6700K @ 4 GHz (8CPUs) with 64GB
of RAM and an NVIDIA GeForce GTX 1080 Ti running Windows 10 64-bit.

In the following a performance diagram will be used to visualize the performance data.
To make the diagram more readable the data has been smoothed: Normally there are ten
measurements per second, but they were reduced to one mean measurement per second.
In the diagram the mean values are represented by the line and the lighter area behind
the lines represent the standard deviation from the mean. Furthermore the horizontal
axis represents the time in the simulation, while the vertical axis represents the time it

89

6. Validation and Case Studies

Figure 6.14: The maximum density of agents over the entirety of the second simulation.
The unit of the legend is in agents per m2

took to compute the next simulation step.

Because of the way the algorithm is constructed, we know the dependencies of the models
we used. The tactical model is dependent on the (reachable) domain size and the number
of agents. It uses a flood-filling algorithm that depends on the domain size (number of
cells) and then has to compute the density of agents in that domain. The operational
model depends on the density of agents and obstacles as every agent has to compute
a path around other agents or obstacles that are near to the agent. In the worst case
the performance is Θ(a2) where a is the number of agents. This may occur in dense
situations if each agent has to check every other agent. In the best case the algorithm
has a performance of Θ(a), if all agents are so far away from each other that they do not
have to check other agents at all.

6.4.1 RiMEA Performance

Most of the test cases’ diagrams look very similar. Test Case 11’s diagram is shown in
Figure 6.15 and represents this class of diagrams. The tactical model takes up most of
the computational time and the operational layer is computed very quickly. Both values

90

6.4. Performance

0 50 100 150 200 250 300

0
20

40
60

80

Simulated Time (s)

P
er

fo
rm

an
ce

 (
m

s)

Tactical Layer
Operational Layer
Overhead

Figure 6.15: RiMEA Test Case 11 performance

0 20 40 60 80

0
50

10
0

15
0

20
0

Simulated Time (s)

P
er

fo
rm

an
ce

 (
m

s)

Tactical Layer
Operational Layer
Overhead

Figure 6.16: RiMEA Test Case 15 performance

go down eventually over time as less and less pedestrians are inside of the simulation.

Test Case 15 is a bit different as can be seen in Figure 6.16. The performance of the
tactical layer peaks around 35 seconds as more pedestrians try to go around the corner.
While the tactical layer has a clear peak, the operational layer stays the same throughout
the simulation. This indicates that the tactical layer cannot handle dense simulations as
well as the operational layer.

91

6. Validation and Case Studies

0 100 200 300 400

0
50

0
10

00
15

00

Simulated Time (s)

P
er

fo
rm

an
ce

 (
m

s)
Tactical Layer
Operational Layer
Overhead

Figure 6.17: Performance graph of the real world scenario Tanzbrunnen

6.4.2 Real World Scenario Performance

The real world scenario is a very complex simulation with a big domain and a large
number of pedestrians (11, 993 agents). Because of this the performance is slower than
real-time and the diagram of it can be seen in Figure 6.17. The slowest part of the
simulation occurs between 150 and 175 seconds of simulation time. There the time
it takes to compute a time step of 0.1 seconds exceeds three seconds. The simulation
is down to zero agents after 400 seconds. This is the time when the tactical model’s
simulation time drops significantly.

The peak in the operational layer’s performance curve might be due to a large congestion
of pedestrians that happens at that time. This congestion dissolves over time as agents
try to reach other, less used exits and more agents leave the simulation.

6.4.3 Performance Tests

In order to identify performance bottlenecks a few tests were conducted. The same
simple setup was measured for different domain sizes and agent numbers. In this setup
all agents start on the left side of a square domain of a certain size and have their target
at the right side of this domain. Table 6.2 shows the detailed results of the test.

The following graphs show the performance of the tactical and operational layer in
addition to the overhead. The overhead is produced by copying the data between the
layers. As can be seen in Figure 6.18 the tactical layer is the most expensive part of
the simulation for varying agent numbers on a small domain. It is also notable that the
tactical layer seems to follow a near-linear relationship between the number of agents
and the performance while the operational layer seems to have a quadratic growth rate.

92

6.4. Performance

0 2000 4000 6000 8000

0
10

0
20

0
30

0
40

0
50

0
60

0

Area = 2,000m²

Agents

P
er

fo
rm

an
ce

 (
m

s)

Tactical Layer
Operational Layer
Overhead

Figure 6.18: Performance graph of the mean performance for an area of 2, 000m2

93

6. Validation and Case Studies

0 2000 4000 6000 8000

0
10

0
20

0
30

0
40

0
50

0
60

0
Area = 6,000m²

Agents

P
er

fo
rm

an
ce

 (
m

s)

Tactical Layer
Operational Layer
Overhead

Figure 6.19: Performance graph of the mean performance for an area of 6, 000m2

This holds true until the area reaches 6, 000m2 (see Figure 6.19). At this size the initial
cost of the tactical layer is by 32ms bigger than the cost for an area of 2, 000m2, but the
difference in cost for over 8, 000 agents is nearly the same, i.e., 38ms. In contrast, the
operational layer starts out with a difference of 0.1ms for 100 agents, but ends in a gap
of 157ms. This is also the point where the tactical and operational layer use up nearly
equal amounts of computational time. After this point the operational layer takes more
time to compute at high agent numbers than the tactical layer (see Figure 6.20).

94

6.4. Performance

0 2000 4000 6000 8000

0
10

0
20

0
30

0
40

0
50

0
60

0

Area = 10,000m²

Agents

P
er

fo
rm

an
ce

 (
m

s)

Tactical Layer
Operational Layer
Overhead

Figure 6.20: Performance graph of the mean performance for an area of 10, 000m2

95

6. Validation and Case Studies

Agents Domain Area Tactical L. Opera. L. OH Overall
100 2, 000m2 26ms 1ms 0ms 27ms

2080 2, 000m2 135ms 13ms 0ms 149ms
4060 2, 000m2 286ms 30ms 1ms 317ms
6040 2, 000m2 366ms 117ms 2ms 485ms
8020 2, 000m2 430ms 308ms 2ms 740ms

100 4, 000m2 42ms 1ms 0ms 43ms
2080 4, 000m2 149ms 9ms 1ms 159ms
4060 4, 000m2 307ms 40ms 1ms 348ms
6040 4, 000m2 380ms 145ms 1ms 526ms
8020 4, 000m2 453ms 382ms 2ms 837ms

100 6, 000m2 58ms 1ms 0ms 59ms
2080 6, 000m2 167ms 8ms 1ms 176ms
4060 6, 000m2 321ms 51ms 1ms 373ms
6040 6, 000m2 393ms 167ms 1ms 561ms
8020 6, 000m2 468ms 465ms 1ms 934ms

100 8, 000m2 75ms 1ms 0ms 76ms
2080 8, 000m2 182ms 8ms 1ms 191ms
4060 8, 000m2 338ms 63ms 2ms 403ms
6040 8, 000m2 410ms 184ms 1ms 595ms
8020 8, 000m2 484ms 528ms 1ms 1013ms

100 10, 000m2 90ms 1ms 0ms 91ms
2080 10, 000m2 200ms 8ms 1ms 209ms
4060 10, 000m2 355ms 71ms 2ms 428ms
6040 10, 000m2 425ms 200ms 1ms 626ms
8020 10, 000m2 499ms 578ms 1ms 1078ms

Table 6.2: Performance test with different domain sizes and agent counts. Performance
measurements are the mean of a 100 steps simulation (10 Seconds). OH is Overhead

96

CHAPTER 7
Summary and Future Work

7.1 Summary
This thesis describes a plugin for Visdom that extends it by a pedestrian simulation
module. The structure of a pedestrian simulation is discussed using the layered model
by Hoogendoorn and Bovy [HB04]. For the tactical layer the quickest path model by
Kretz et al. [KGH+11] is utilized and for the operational layer a modified version of
the ORCA algorithm presented by Curtis and Manocha [CM14] is used. The strategic
layer is modeled by the user in the form of target zones that the agents try to reach.
Furthermore Visdom’s emitter system is supported, which enables the user to add agents
to the simulation as it goes on.

Two types of visualization are used: a coloring of the domain based on properties assigned
to it and change in the color brightness of the agents based on their velocity so the user
can identify slow moving agents more easily. Beside these two options, it is also possible
to pick a single agent to look at its path so far and its current velocity. Another way to
visualize data about agent’s is via graphs. There are three types of graphs implemented.
The first graph shows the velocity of selected agents over time, the second graph shows
the number of agents in a certain area and the third graph shows the density of agents
in a certain area.

The agents themselves are not models of humans, but glyphs that are designed to make it
easier to identify agents and the direction they are currently facing. The usage of glyphs
also removes unnecessary visual noise like the walking animation of models and their
visual complexity.

Our model is validated with the help of the RiMEA test cases [rim]. While these do not
have real world data to check against, they are designed in a way that a successful test
adds to the credibility of the system. To be sure that the model can predict evacuations
accurately, tests with real world data are necessary.

97

7. Summary and Future Work

In order to validate the system in a real world scenario, an evacuation of the Tanzbrunnen
in Cologne is simulated. Unfortunately we do not have any data to compare our results
against, but this test shows that the system can handle real world scenarios.

We also discuss the computational performance of the system. We discover that a big
bottleneck is the implementation of the tactical layer.

7.2 Future Work

The system has passed the RiMEA tests, but it is still advisable to validate it against
real world data. This can be achieved by either taking existing real world data and
model it in the simulation or by creating own studies and validate against these data.
Existing data would be more desirable, because other systems might use the same data
for validation, thous making both systems comparable.

Currently it is not possible to model buildings with multiple floors as the simulation is
only 2.5D. To enable multi-storey buildings, it would be necessary to add portals that
can connect two places with each other like a teleporter or a worm hole. This would
allow the designer to arrange the floors next to each other and create portals at the
staircases, which would connect the levels. A delay between agents entering and exiting
portals could be added to simulated the pedestrians moving over the staircase. This
feature would require the adaptation of both the operational and the tactical layer of the
simulation.

Because the tactical layer is the slowest piece of the system, it should be improved. A
possible optimization is the partial computation of the time field. As agents do not
have to know all possible quickest paths to their destination it should be possible to
limit the search space to the absolute minimum. It might be possible to implement an
optimization that works similar to the A*-algorithm.

Another performance-heavy computation is the calculation the agent densities as this
happens sequentially at the moment. It should be possible to rewrite the code to enable
parallel code execution for each agent.

Currently all agents have global knowledge of the domain. This assumption is not very
realistic as it includes real time data such as the current density of agents at each point of
the domain. With bigger domains, the model might not accurately predict the evacuation
any more. The solution to this problem would be to only use local information and old
information the agent has observed, but cannot observe now (memory). This would open
up new possibilities like placing signs to help agents to get to the exit quicker. To make
the signs useful for planners they would have to have their own model that determines
whether the agents even notice the signs or not.

The operational model can be improved as well. At the moment agents may change
their velocities from one time step to the next from one extreme to another one. For
example, the agent can go to the right and then suddenly move to the left with full speed,

98

7.2. Future Work

without slowing down beforehand. The model behaves as if pedestrians have no mass
and therefore no inertia. A small change in the setup of the ORCA halfplanes could
change this. Two additional planes shall be added in such a way that the angle and the
magnitude of velocity change is limited proportional to the current velocity. This should
prevent the agents from accelerating as fast as they want and changing their direction of
movement as strong as they want.

Another open topic is the height model. It is very simplistic at the moment and produces
some unrealistic behavior. For example, agents are able to climb up steep cliffs which
might not be desirable. A possible solution could be to handle steep slopes as impassable.
Another flaw is that agents cannot fall down cliffs or holes at the moment. This should
also be considered when reworking this system as well as using a better and more accurate
speed model. This enhanced speed model should also takes the direction of movement
(uphill, downhill) into account and assigns the speed accordingly.

99

List of Figures

2.1 The three layers of a pedestrian simulation according to Hoogendoorn and
Bovy’s [HB04] definition . 5

2.2 Simulated pedestrians (agents) on a grid. Pedestrians start from the top and
the bottom, trying to reach the other end. Figure by Feng et al. [FDCZ13] 7

2.3 Lane formation of agents using a social forces model. The radius of the circles
represent the velocity of the agents. Figure by Helbing and Molnár [HM95] 7

2.4 Paths of two agents avoiding each other. Comparison between Helbing and
Molnár’s Social Forces Model (red path) and PLEdstrian (blue path). Figure
by Guy et al. [GCC+10] . 8

2.5 1000 agents trying to pass through the middle of the circle. Figure by Berg et
al. [VDBGLM11] . 8

2.6 A visibility graph connecting the source and the destination. Figure by Höcker
et al. [HBK+10] . 9

2.7 Quickest path model. Figures by Kretz et al. [KGH+11] 10
2.8 Fanini1 and Calori’s [FC14] simulation system rendering. On the top: real-

time overlay of the pedestrian’s paths colored by density like a heat map. On
the bottom: the 3D density graph of the pedestrians. 12

2.9 The density of agents is visualized by the color of the floor. Figure by Handel1
et al. [HGPA15] . 12

3.1 Overview of the simulation of a single timestep 15
3.2 Velocity obstacle V Oτ

A|B in A’s velocity space, figure redrawn from original
paper [VDBGLM11]. The gray area contains all velocities vA − vB that will
result in a collision between agent A and B. 19

3.3 Graphical representation of ORCAτ
A|B: the set of permitted velocities for

agent A with respect to agent B in A’s velocity space, figure redrawn from
the original paper [VDBGLM11] . 21

3.4 Avoiding multiple agents from the perspective of agent A, figure redrawn from
the original paper [VDBGLM11] . 22

3.5 Fundamental diagram of measurements of pedestrians and simulated agents
using ORCA. The speed of the simulated agents stays the same with increasing
densitiy whereas the measurements show a decreas in the speed with increasing
density. Figure from original paper[CM14] 24

101

3.6 The effective position (EBA) of agent B as perceived by agent A, figure
redrawn from the original paper [VDBGLM11] 26

3.7 The different flood-filling metrics. The green cell is the start, all black cells
have a distance < 4. 31

3.8 The time field of the estimated arrival of the agents. Number of agents is the
current number of active agents in the simulation. The path of one agent is
traced. It first tried to go through the upper corridor, but then switched to
the lower corridor when the congestion formed. 34

3.9 Two density computation methods . 35
3.10 The modified Gauss g(x) from Equation 3.36 for r = 1.5. This modified Gauss

produces only values greater than zero within the interval]− r; r[outside of
this interval the function is zero. 36

3.11 C0 through C8 are cells of a grid. Over the grid the modified Gauss bell curve
g(x) is positioned and the 9 sampling points of cell C4 are shown. 36

3.12 Agents spawned in a polygon on the left and a single agent on the right. . 38
3.13 A spawn area with two targets assigned to it. The 14 created agents will move

to the target with the lowest estimated arrival time. 39

4.1 A closeup of agents. An agent consists of a cone, a sphere, and another cone
as a ’nose’ . 42

4.2 Two selected agents traced by two lines with the velocity displayed in an
information box above them. 42

4.3 Measuring the agent density in a certain region 43
4.4 The density field of the agents can be seen on the floor. White represents

a density of zero agents per square meter (A/m2), yellow a density of one
A/m2, red a density of two A/m2, and black a density greater or equal to
three. 44

4.5 Density Aggregations . 45
4.6 The general layout of the GUI . 48

5.1 A single node . 52
5.2 A simple data flow . 53
5.3 The class diagram of Visdom’s most important data structures 55
5.4 The inputs and outputs of the crowd simulation node 57
5.5 The class diagram of the simulation executor 58
5.6 The class diagram of an agent . 60
5.7 Activity diagrams describing agent creation and import 61
5.8 The class diagram of the value providers 62
5.9 The class diagram of the grouped distance data 63
5.10 The activity diagram of the simulation executor’s step computation . . . 63
5.11 The class diagrams concerning the simulation interfaces of the tactical and

operational layer . 64
5.12 The class diagram of the tactical model 66
5.13 An overview of the data flow diagram of the pedestrian simulation 67

102

5.14 The Data Flow Diagram of the terrain . 69
5.15 The Data Flow Diagram of the walls . 70
5.16 The Data Flow Diagram of the targets . 70
5.17 The Data Flow Diagram of the agent creation 71
5.18 The Data Flow Diagram of the water simulation 72
5.19 The Data Flow Diagram of the pedestrian simulation 73
5.20 The Data Flow Diagram of the terrain visualization 74
5.21 The Data Flow Diagram of the agent visualization 75
5.22 The Data Flow Diagram of the plotting 76

6.1 RiMEA Test Case 6 after 6 seconds . 78
6.2 RiMEA Test Case 9 Setup with four open doors. For the other test case the

lower two doors are closed. 79
6.3 RiMEA Test Case 10 Path Traces . 80
6.4 RiMEA Test Case 11 after 50 seconds . 81
6.5 RiMEA Test Case 12 Setup . 82
6.6 RiMEA Test Case 15 Setup . 82
6.7 A comparison between three different setting variations for Test Case 6. . 83
6.8 RiMEA Test Case 11 with the shortest path model 84
6.9 The overlay of the floor plan of the area in edit mode 85
6.10 The evacuation of the Tanzbrunnen. The number of agents at the bottom

is the current number of agents that have not reached an exit yet. At the
bottom right the passed simulated time since the beginning of the simulation
is shown. 86

6.11 The time field at different times of the evacuation of the Tanzbrunnen. . . 87
6.12 The setup of the second variation of the scenario: The new walls are colored

in blue while the remaining exits are visualized by green arrows and green
lines shaped like trapezoids with the longest side missing. All blocked small
exits and small pockets are colored red striped. 88

6.13 The maximum density of agents over the entirety of the first simulation. The
unit of the legend is in agents per m2 . 89

6.14 The maximum density of agents over the entirety of the second simulation.
The unit of the legend is in agents per m2 90

6.15 RiMEA Test Case 11 performance . 91
6.16 RiMEA Test Case 15 performance . 91
6.17 Performance graph of the real world scenario Tanzbrunnen 92
6.18 Performance graph of the mean performance for an area of 2, 000m2 . . . 93
6.19 Performance graph of the mean performance for an area of 6, 000m2 . . . 94
6.20 Performance graph of the mean performance for an area of 10, 000m2 . . 95

103

List of Tables

3.1 The definition of agent A . 16
3.2 The default values of the boundary conditions for an agent. The position pA

is defined via one of the methods described in the text. All other values of an
agent like va or vp

A are set to zero. 37

5.1 The optional components of the MeshInstances object containing the agents 59

6.1 Simulated evacuation times for the RiMEA Test Cases 81
6.2 Performance test with different domain sizes and agent counts. Performance

measurements are the mean of a 100 steps simulation (10 Seconds). OH is
Overhead . 96

105

List of Algorithms

3.1 The flood filling algorithm . 31

3.2 Compute the derivative of a field . 33

107

Bibliography

[Ben75] Jon Louis Bentley. Multidimensional binary search trees used for associa-
tive searching. Communications of the ACM, 18(9):509–517, 1975.

[BJR99] Grady Booch, Ivar Jacobson, and James Rumbaugh. The unified modeling
language reference manual. Addison-Wesley, December 1999.

[BT00] Srikanth Bandi and Daniel Thalmann. Path finding for human motion in
virtual environments. Computational Geometry, 15(1-3):103–127, 2000.

[CGZM11] Sean Curtis, Stephen J Guy, Basim Zafar, and Dinesh Manocha. Virtual
tawaf: A case study in simulating the behavior of dense, heterogeneous
crowds. In Computer Vision Workshops (ICCV Workshops), 2011 IEEE
International Conference On, pages 128–135. IEEE, 2011.

[CKB+16] Daniel Cornel, Artem Konev, Sadransky Bernhard, Horváth Zsolt, Bram-
billa Andrea, Viola Ivan, and Waser Jürgen. Composite flow maps.
Computer Graphics Forum, 35(3):461–470, June 2016.

[CM14] Sean Curtis and Dinesh Manocha. Pedestrian simulation using geometric
reasoning in velocity space. In Pedestrian and Evacuation Dynamics 2012,
pages 875–890. Springer, 2014.

[CSM12] Sean Curtis, Jamie Snape, and Dinesh Manocha. Way portals: efficient
multi-agent navigation with line-segment goals. In Proceedings of the
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games,
pages 15–22. ACM, 2012.

[DCSRO65] G. A. Dean (Commonwealth Scientific Research Organization). An anal-
ysis of the energy expenditure in level and grade walking. Ergonomics,
8(1):31–47, 1965.

[eig] Eigen. http://eigen.tuxfamily.org. [Online; accessed 10-
November-2021].

[FC14] Bruno Fanini and Luigi Calori. 3D interactive visualization of crowd
simulations at urban scale. In 9° Congresso Città e Territorio Virtuale,

109

http://eigen.tuxfamily.org

Roma, 2, 3 e 4 ottobre 2013, pages 276–284. Università degli Studi Roma
Tre, 2014.

[FDCZ13] Shumin Feng, Ning Ding, Tao Chen, and Hui Zhang. Simulation of pedes-
trian flow based on cellular automata: A case of pedestrian crossing street
at section in china. Physica A: Statistical Mechanics and its Applications,
392(13):2847–2859, 2013.

[Fra27] Philipp Frank. Über die Eikonalgleichung in allgemein anisotropen Medien.
Annalen der Physik, 389(23):891–898, 1927.

[FS98] Paolo Fiorini and Zvi Shiller. Motion planning in dynamic environments
using velocity obstacles. The International Journal of Robotics Research,
17(7):760–772, 1998.

[FT04] Taku Fujiyama and Nick Tyler. An explicit study on walking speeds of
pedestrians on stairs. Japan Society of Civil Engineers/Transportation
Research Board, USA, 2004.

[GCC+10] Stephen J Guy, Jatin Chhugani, Sean Curtis, Pradeep Dubey, Ming Lin,
and Dinesh Manocha. Pledestrians: a least-effort approach to crowd
simulation. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics
symposium on computer animation, pages 119–128. Eurographics Associa-
tion, 2010.

[GCLM12] Stephen J Guy, Sean Curtis, Ming C Lin, and Dinesh Manocha. Least-
effort trajectories lead to emergent crowd behaviors. Physical review E,
85(1):016110, 2012.

[GLM10] Stephen J Guy, Ming C Lin, and Dinesh Manocha. Modeling collision
avoidance behavior for virtual humans. In Proceedings of the 9th Interna-
tional Conference on Autonomous Agents and Multiagent Systems: Volume
2, pages 575–582. International Foundation for Autonomous Agents and
Multiagent Systems, 2010.

[GWY+11] Hanqi Guo, Zuchao Wang, Bowen Yu, Huijing Zhao, and Xiaoru Yuan.
Tripvista: Triple perspective visual trajectory analytics and its application
on microscopic traffic data at a road intersection. In Pacific Visualization
Symposium (PacificVis), pages 163–170. IEEE, 2011.

[HB04] Serge P Hoogendoorn and Piet HL Bovy. Pedestrian route-choice and
activity scheduling theory and models. Transportation Research Part B:
Methodological, 38(2):169–190, 2004.

[HBK+10] Mario Höcker, Volker Berkhahn, Angelika Kneidl, Andre Borrmann,
and Wolfram Klein. Graph-based approaches for simulating pedestrian
dynamics in building models. eWork and eBusiness in Architecture,
Engineering and Construction, pages 389–394, 2010.

110

[HGPA15] Oliver Handel, Ege Gümüş, Efthymios Papoutsis, and Julian Amann.
Dynamic visualization of pedestrian simulation data. In Forum Bauinf,
volume 2015, pages 1–9, 2015.

[HM95] Dirk Helbing and Peter Molnar. Social force model for pedestrian dynamics.
Physical review E, 51(5):4282, 1995.

[IIC+96] A. Iserles, U.L.D.A. Iserles, D.G. Crighton, M.J. Ablowitz, S.H. Davis,
E.J. Hinch, J. Ockendon, C.G. Crighton, and P.J. Olver. A First Course
in the Numerical Analysis of Differential Equations. Cambridge Texts in
Applied Mathematics. Cambridge University Press, 1996.

[JW07] Won-ki Jeong and Ross Whitaker. A fast eikonal equation solver for
parallel systems. In SIAM conference on Computational Science and
Engineering. Citeseer, 2007.

[KGH+11] Tobias Kretz, Andree Große, Stefan Hengst, Lukas Kautzsch, Andrej
Pohlmann, and Peter Vortisch. Quickest paths in simulations of pedestri-
ans. Advances in Complex Systems, 14(05):733–759, 2011.

[KLH14] Tobias Kretz, Karsten Lehmann, and Ingmar Hofsäß. User equilibrium
route assignment for microscopic pedestrian simulation. Advances in
Complex Systems, 17(02):1450010, 2014.

[rim] RiMEA e.V. - Richtlinie für Mikroskopische Entfluchtungs Analysen.
https://rimea.de/. [Online; accessed 10-November-2021].

[RWF+13] Hrvoje Ribičić, Jürgen Waser, Raphael Fuchs, Günter Blöschl, and Eduard
Gröller. Visual analysis and steering of flooding simulations. IEEE
Transactions on Visualization and Computer Graphics, 19(6):1062–1075,
2013.

[Set99] James Albert Sethian. Level set methods and fast marching methods:
evolving interfaces in computational geometry, fluid mechanics, computer
vision, and materials science, volume 3. Cambridge university press, 1999.

[SSKB05] Armin Seyfried, Bernhard Steffen, Wolfram Klingsch, and Maik Boltes.
The fundamental diagram of pedestrian movement revisited. Journal of
Statistical Mechanics: Theory and Experiment, 2005(10):P10002, 2005.

[SWR+12] Benjamin Schindler, Jürgen Waser, Hrvoje Ribičić, Raphael Fuchs, and
Ronald Peikert. Multiverse data-flow control. IEEE Transactions on
Visualization and Computer Graphics, 19(6):1005–1019, 2012.

[tan] Tanzbrunnen Köln. https://koelncongress.de/locations/
tanzbrunnen-koeln/. [Online; accessed 10-November-2021].

111

https://rimea.de/
https://koelncongress.de/locations/tanzbrunnen-koeln/
https://koelncongress.de/locations/tanzbrunnen-koeln/

[VDBGLM11] Jur Van Den Berg, Stephen J Guy, Ming Lin, and Dinesh Manocha.
Reciprocal n-body collision avoidance. In Robotics research, pages 3–19.
Springer, 2011.

[vis] Visdom - Integrated Visualization. http://visdom.at/. [Online;
accessed 10-November-2021].

[vrv] VRVis Zentrum für Virtual Reality und Visualisierung Forschungs-GmbH.
http://www.vrvis.at/. [Online; accessed 10-November-2021].

[Wei93] Ulrich Weidmann. Transporttechnik der fußgänger: transporttechnische
eigenschaften des fußgängerverkehrs, literaturauswertung. IVT Schriften-
reihe, 90, 1993.

112

http://visdom.at/
http://www.vrvis.at/

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation & Problem Statement
	Aim of the Work
	Methodological Approach
	Contributions

	Analysis of Existing Approaches
	Pedestrian Simulation
	Visualizations of Agent Based Data
	Comparison and Summary of Existing Approaches

	Agent Based Simulation for Evacuation
	Overview
	The Operational Layer
	The Tactical Level
	Initial States and Boundary Conditions

	Visualization and Interactive Simulation Control
	Data Visualization
	Visualizations and Interactions in Visdom

	Implementation
	Visdom
	The Pedestrian Simulation Plugin
	The Data Flow Diagram of the Pedestrian Simulation

	Validation and Case Studies
	RiMEA Test Cases
	Variations on the Tests
	Real World Case Study
	Performance

	Summary and Future Work
	Summary
	Future Work

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

