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Watertight Incremental Heightfield Tessellation
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Abstract—In this paper, we propose a method for the interactive visualization of medium-scale dynamic heightfields without visual
artifacts. Our data fall into a category too large to be rendered directly at full resolution, but small enough to fit into GPU memory
without pre-filtering and data streaming. We present the real-world use case of unfiltered flood simulation data of such medium scale
that need to be visualized in real time for scientific purposes. Our solution facilitates compute shaders to maintain a guaranteed
watertight triangulation in GPU memory that approximates the interpolated heightfields with view-dependent, continuous levels of
detail. In each frame, the triangulation is updated incrementally by iteratively refining the cached result of the previous frame to
minimize the computational effort. In particular, we minimize the number of heightfield sampling operations to make adaptive and
higher-order interpolations viable options. We impose no restriction on the number of subdivisions and the achievable level of detail to
allow for extreme zoom ranges required in geospatial visualization. Our method provides a stable runtime performance and can be
executed with a limited time budget. We present a comparison of our method to three state-of-the-art methods, in which our method is
competitive to previous non-watertight methods in terms of runtime, while outperforming them in terms of accuracy.

Index Terms—Visualization techniques and methodologies, heightfield rendering, terrain rendering, level of detail, tessellation

1 INTRODUCTION

EIGHTFIELD rendering is essential in many applica-
Htions using geospatial visualization, particularly of
3D geoinformation systems for visualizing digital elevation
models and environmental simulation data. Heightfields
are discrete scalar fields, usually defined on regular or un-
structured grids, and have no visual representation of their
own. For visualization, a continuous surface must be recon-
structed from the values by interpolation. The reconstructed
surface then has to be approximated by triangulated geom-
etry that GPUs can handle, which is called tessellation.

Tessellation of heightfields is challenging, as application
requirements often collide with hardware limitations. As
current GPUs can only render a few million triangles in
real time, it is not feasible to uniformly triangulate each
cell of a heightfield with several hundred million cells or
more. To overcome this problem, tessellation algorithms
with view-dependent level of detail (LoD) have been pro-
posed that decouple the complexity of the heightfield from
its triangulation. However, each of these algorithms comes
with its own set of limitations and trade-offs between the
achievable LoD and interactivity. A common problem here is
the inability to produce a watertight triangulation. Instead,
many algorithms produce cracks caused by T-junctions be-
tween adjacent triangles leading to visual artifacts. Other
limitations include lack of support for dynamic updates of
the heightfield data, no efficient support for higher-order
interpolation, a limited number of subdivisions per triangle,
and an oftentimes lower than real-time performance. In
the context of decision support for flood management as
illustrated in which provides a real-world use case
for our proposed method, these limitations are too severe.
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For this use cases, we require a tessellation algorithm that
provides watertight triangulations of multiple large height-
fields defined on regular or adaptive grids with higher-order
interpolation enabling a wide zoom range with continuous
LoD at steady real-time performance.

In this paper, we propose a novel GPU-based height-
field tessellation with adaptive LoD that fulfills all of these
requirements. We tackle the most challenging aspect of
guaranteed watertightness during parallel processing by
maintaining triangle adjacency information to operate on
the direct neighborhood of each triangle during subdivi-
sion and merging. To avoid corrupting changes of shared
information of neighboring triangles during parallel pro-
cessing, we employ task scheduling by graph coloring. Our
solution also caches a computed triangulation as starting
point for the next computation. As a result, only incremental
changes are required instead of a complete recomputation,
which greatly reduces the computational effort and thus
significantly improves the runtime. This particularly bene-
fits applications in geoinformation systems, where complex
interpolation methods mean that sampling vertex positions
accounts for a large part of the tessellation effort.

Our solution fills a gap in heightfield visualization,
which is the artifact-free visualization of heightfields that
fit into GPU memory completely, but are too large to be
rendered without view-dependent LoD, with at least 60
frames per second. We focus on the concrete use case of
visualizing a country-sized static terrain heightfield defined
on an adaptive grid overlaid by a dynamic simulation
heightfield in a focus area with all data provided as unfil-
tered scalar fields. Yet, our solution is largely independent of
the underlying heightfield data, their sampling strategy, and
the employed LoD metric such that it can be integrated into
many existing systems with minimal effort. In summary, we
contribute a novel approach for the adaptive tessellation of
large heightfields that

e is guaranteed to be watertight
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Fig. 1: Real-time visualization result of our method for decision support in flood management. (a) Overview perspective
with geospatial data of Austria. Three nested terrain heightfields defined on an area of 572km x 293 km are combined with
a dynamic water heightfield in a focus region of 22km x 15km. (b) Close-up of flood simulation results at 1 m resolution.

¢ minimizes computational effort by incrementally up-
dating previous solutions

e provides stable and controllable real-time perfor-
mance for interactive tasks

o allows for an unlimited number of subdivisions and
levels of detail

o supports multiple and nested heightfields.

An implementation of our solution is provided in the sup-
plemental material of this paper.

2 RELATED WORK

Heightfield rendering in real time is a challenging task due
to the combination of the required surface reconstruction
from complex heightfield data with the efficient genera-
tion of a view-dependent visual representation. The most
straightforward combination is achieved through ray cast-
ing , , , where the reconstructed surface is directly
rendered through the intersection of a view ray with the
polynomial surface of the heightfield’s interpolant. The
downside of ray casting is that the interpolant has to be
evaluated for each pixel of the screen, which means that ren-
dering performance depends on both the complexity of the
used surface reconstruction and the screen size. In practice,
this limits surface reconstruction to simple interpolants such
as bilinear interpolation, for which a ray-surface intersection
can be calculated efficiently, and excludes more accurate
methods such as kriging [4], local refinable splines [5],
and adaptive bicubic interpolation [6]. In previous work,
combining higher-order surface reconstruction with real-
time ray casting has not been successful [7].

This is why most approaches rely on the generation
of a view-dependent triangulation as an approximation
of the reconstructed surface. One option is to move the
triangulation with the camera and resample the vertices
on the content they currently cover, as demonstrated with
the projected grid [8], [9], the persistent grid [10], [11],
and the projected mesh [12]. These approaches provide
implicit levels of detail with a consistent performance, but
may introduce undersampling and hide important features.
Another option is to maintain a triangulation fixed in space,
but changing its LoD locally. There have been countless
approaches on how to generate this triangulation, of which
the most noteworthy ones have been surveyed by Pajarola

and Gobbetti [13]. The geometry clipmap [14], is one

of the most popular and robust triangulation approaches
for real-time applications. However, it is limited by only
providing a few discrete regions of decreasing resolution
instead of continuous levels of detail, and only considers
the 2D distance of triangles to the camera instead of the
actual heightfield to determine the LoD.

Several approaches have been proposed to facilitate the
evolving parallel processing capabilities of modern GPUs.
Early hybrid approaches maintain a hierarchical representa-
tion of the adaptive subdivisions on the CPU, which is then
sent to the GPU for meshing [16], which requires expensive
CPU-GPU communication. For GPUs that cannot generate
new geometry on the fly, patch-based mesh refinement [17],
can be used, which replaces a patch of a mesh with a
precomputed refinement pattern. With support for the dy-
namic generation of geometry, tessellation can become much
more flexible, as proposed for geometry shaders [19], [20],
tessellation shaders facilitating the hardware tessellation
unit [21], [22], [23], compute shaders [24], [25], and mesh
shaders [26], [27]. Most approaches based on tessellation
shaders are limited in the achievable LoD by a maximum
edge tessellation factor of 64 for triangles. To achieve un-
limited tessellation, several approaches , subdivide
the initial triangulation prior to hardware tessellation on the
CPU. Lee et al. avoid this CPU overhead by apply-
ing hardware tessellation recursively. However, while the
hardware tessellation unit in GPUs is designed specifically
for adaptively generating vast amounts of geometry, e.g.
for subdivision surfaces, it cannot be used to revert the
process to simplify finely triangulated geometry. This means
that after camera changes, the entire triangulation has to be
generated from scratch.

The approach by Khoury et al. addresses this prob-
lem by caching triangles of a previous computation that
are then subdivided and merged as needed. Extending this
approach, Kerbl et al. propose a different encoding for
the cached triangles to accelerate the calculation of vertex
coordinates, making this possibly the most efficient and
flexible heightfield rendering approach to date. However,
neither of the two approaches produces a watertight trian-
gulation, and both of them are limited in the number of
subdivisions by the data type used for triangle encoding.
If the maximum number of subdivisions is exceeded at
runtime, the initial triangulation has to be refined, forcing
a recalculation of the entire view-dependent triangulation.
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Fig. 2: Overview of the algorithm. Starting with an initial triangulation, an adaptive triangulation is computed from the
previous result each frame. After evaluating the current level of detail of each triangle, necessary changes are applied
iteratively in the tessellation loop, where the affected triangles are separated by their assigned graph color for subdivision
and merging and are processed in four separate passes. The resulting triangle buffer is optionally compacted and rendered.

Another extension to the approach of Khoury et al. using
concurrent binary trees for triangle encoding [31] eliminates
T-unctions, but requires a predefined maximum number
of subdivisions, while the required pre-allocated memory
grows exponentially with this number.

3 OVERVIEW OF THE ALGORITHM

Our algorithm works on a set of triangles with adjacency
and hierarchy information stored for each triangle. This
set is maintained in GPU memory and is modified with
compute shaders to achieve a sufficient triangle density in
screen space at minimum cost. As illustrated in it
consists of three main steps, which are the determination of
the triangle LoD states, the tessellation loop, and finally a
rendering pass, with additional steps inbetween to optimize
the pipeline. After a trivial coarse view-independent initial
triangulation into right triangles, the rest of the pipeline
is executed conditionally if an update of the result from
the previous frame is required. Whenever the heightfield
changes due to progression of a simulation or by reading
another time step from the file system, all vertices of existing
triangles are resampled on the heightfield. Succeedingly or
every time the camera perspective or user-defined target
LoD changes, the LoD state for all triangles is updated,
which can be subdivide, merge, or keep unchanged. If all
triangles are kept, they are rendered immediately.

If changes are required through subdivision or merging,
we enter the tessellation loop, which iteratively refines
the triangles as needed. This is the core of the algorithm
which requires special data structures and careful syn-
chronization for concurrent processing, which is explained
in detail in Subdividing a triangle or merging
triangles back together changes the adjacency information
of neighboring triangles along the edges. To avoid overly
complicated low-level synchronization between triangles,
we use task scheduling based on graph coloring [32]], for
which we interpret the mesh as a graph where triangles are
the nodes. The graph colors group the triangles into four
separate groups that can be processed concurrently. Based
on the LoD state, we perform the subdivision separately for
the triangles of the four different graph color groups. During
subdivision, the shared hypothenuse of two triangles is
split, a new vertex is created and sampled on the heightfield.

Four new triangles are created, added as child triangles
to their parents, and adjacency information of neighboring
triangles is updated. For each of the new triangles, the LoD
state is calculated and assigned. Then, the triangles are sep-
arated again by graph color for merging. During merging,
four neighboring child triangles and their common vertex
are removed and the adjacency of neighboring triangles is
reset to reference their two parent triangles. The sequence of
subdivision and merging is repeated until a termination cri-
terion is reached: Either fewer than a minimum number of
triangles have been subdivided or merged, or a predefined
processing time budget has been used up.

The final step in the pipeline is efficient triangle render-
ing from an index buffer without any heightfield sampling,
since all vertices have already been sampled on the height-
field during subdivision. In subsequent frames, if the LoD
does not need to be updated, the tessellation loop is skipped
entirely and the cached triangles are rendered.

4 DATA STRUCTURE

Our algorithm operates on a set of triangles in a memory
pool with a fixed size of 8 - 220 elements that we refer to
as triangle buffer. The data we store for each triangle are
listed as a struct in In the GPU implementation, we
use separate arrays for the individual struct members for
better cache coherence. However, for the sake of a simple
explanation of our algorithm, we treat the triangle buffer as
an array of structs in the remainder of the paper.

Each triangle contains semantic flags in a bitfield concate-
nated with a graph color. The first semantic flag is a deleted
flag, which indicates that the element of the triangle buffer
is empty or can be overwritten. All elements in the triangle
buffer are initialized as deleted triangles. The LoD state of
the triangle expresses the operation necessary to approach
the target LoD locally—subdivide, merge, or keep—and is
encoded as a 2-bit value. Finally, each triangle is assigned
a conceptual graph color in the form of a 3-bit value € [0, 7].

We include a heightfield index so that each triangle can
be matched to a heightfield for sampling and rendering if
multiple heightfields are being processed. This way, trian-
gulations of all heightfields can simply be stored in a shared
triangle buffer instead of separate ones. This value can be
omitted in applications with a single heightfield.
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1: struct Triangle

2: byte deleted | LoD state | graph color
3: byte heightfield index

4: int parent triangle index

5 int first child triangle index

6 int3 adjacent triangle indices

7 int3 vertex indices

Fig. 3: Overview of the data stored for each triangle.

When merging triangles as explained in a

set of four triangles is replaced by their two corresponding
parent triangles. For this case, we store the parent triangle
index for each triangle. Triangles of the initial tessellation
are root triangles that cannot be merged any further, which
is indicated with a parent triangle index of —1.

Likewise, we store the first child triangle index for each
parent triangle. During subdivision, we take care that the
child indices of the two new triangles are always consecu-
tive, so it suffices to store the first one. A child index of —1
indicates that a triangle has no children and is therefore a
leaf triangle in the final tessellation.

As both subdivision and merging interact with neigh-
boring triangles, we require neighborhood information of
the triangles, which we store as a triple of adjacent trian-
gle indices. The order of indices is chosen such that the
order of adjacent triangles is counter-clockwise in 2D and
the adjacent triangle along the hypothenuse is the second
index, ie., at component index 1. This simplifies later
checking whether two adjacent triangles share a common
hypothenuse to a comparison of the adjacent triangle indices
at this component index. A missing adjacent triangle at an
edge is indicated by the triangle index —1, which is the case
along the heightfield boundaries.

Finally, 3D vertex positions are stored together with a
heightfield index in a separate vertex buffer, which each
triangle refers to with a triple of vertex indices. Analogous
to adjacent triangles, vertex indices are ordered such that
the triangle is stored counter-clockwise in 2D. Start and
end vertices of the triangle’s hypothenuse correspond to
component indices 1 and 2, i.e., the second edge of the
triangle. Using such a predefined order of indices simplifies
the triangle splitting at runtime.

For memory efficiency, we keep track of the free space of
the triangle and vertex buffers, which includes the unused
portion at the end as well as deleted elements. The unused
area in the buffers is marked implicitly by the highest index
of all used triangles or vertices, respectively. The deleted
elements are tracked in additional free index buffers to which
free triangle and vertex indices are pushed during merging
with the help of a counter. If a free index in one of the
buffers is required for new elements during subdivision, a
lookup is first performed in the free index buffer and the
counter is decreased. Only if the free index buffer is empty,
a new index from the unused space at the end of the triangle
or vertex buffer is acquired. In total, our data structures
occupy 376 MB of GPU memory.
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Fig. 4: Initial tessellation example. Cells are alternately split
along one of their diagonals. Colors and numbering indicate
type and order of the resulting triangles.

5 INITIAL TRIANGULATION

Tessellation commonly works by iteratively refining a coarse
initial triangulation until the level of detail is sufficient. In
this section, we explain how to create an initial triangulation
of a regular fessellation grid that covers the rectangular area
of a heightfield. We start with a heightfield given as scalar
field defined on a regular or adaptive 2D grid with a known
minimum cell size. We create a regular tessellation grid with
coarse cells, where the cell size is a power-of-two multiple &
of this minimum cell size. This integer factor is determined
through an iterative process such that the number of cells
of the tessellation grid just barely exceeds 2000. This is
an empirical value that does not significantly influence the
algorithm. However, defining a roughly equal number of
cells across different heightfields has the effect that the
initial tessellation is decoupled from the complexity of the
heightfield and guarantees similar runtime performance
across different use cases.

We now create a triangulation for the tessellation grid by
constructing two triangles per grid cell, as shown in
To fit the original heightfield extents, the triangulation grid
starts at the bottom left corner of the heightfield, and the
vertices of the rightmost column and upmost row are shifted
towards the heightfield boundaries. The resulting triangula-
tion consists of 2n triangles and (w + 1)(h + 1) vertices,
where n = wh is the number of cells and w, h are the di-
mensions of the tessellation grid. The square cell (z, y) in the
tessellation grid can be split into two right triangles along
one of the two diagonals. We use both options, starting at
the bottom left cell with a split along the diagonal from
top left to bottom right, and then alternate depending on
whether the parity of x and y differs. As a result, our initial
triangulation consists of four different types of triangles
indicated with different colors in These four types
trivially correspond to four colors of a valid graph coloring
of the triangle mesh. As we create an entry for each triangle
in the triangle buffer, we assign a number € [0, 3] to the
triangle type that we store as graph color. The purpose of
these graph colors is task scheduling for parallel process-
ing, which is explained in It is already obvious
from that no triangles of the same color share an
edge or the same adjacent triangles, so they can be updated
concurrently without need for synchronization.

We store the two triangles of each cell (z,y) in the
triangle buffer at indices o = 2(yw+x) and t; = ¢+ 1. The
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vertex indices and adjacent triangle indices of each triangle
can be obtained with simple index arithmetics. We assume
that all 2D vertex positions of the initial triangulation are
inserted row-wise starting from bottom left to top right.
Then, the vertex indices of the two triangles are

y(w+1)+x (y+D(w+1)+z+1
(y(w+1)+x+1>,< (y+D(w+1)+z )
(y+(w+1)+a yw+1)+z+1

if x and y have the same parity, otherwise

(y+D(w+1)+a yw+1)+z+1
( yw+1)+a >,<(y+1)(w+1)+a:+1>.
+Dw+1)+z+1 y(w+1)+z

The order of indices fulfills the requirements formulated
in that the triangles are counter-clockwise in 2D
and that their hypothenuse is the segment from the second
to the third vertex. Likewise, the adjacency information
for each triangle is encoded as a triple of triangle indices
refering to the neighboring triangles in counter-clockwise
order such that the second adjacent triangle is the neighbor
along the hypothenuse. The adjacent triangle indices are

<2w(y1)+2x> (2w(y+1)+2z+1>
ty ) to

to—1 t1+1
if x and y have the same parity, otherwise

to—1 t1+1
< tl >7< to >.
w(y+1)+ 2z 2wy —1)+2x+1

For triangles along the borders of the grid, ie., in the
first and last rows and columns, some adjacent triangle
indices might be out of bounds, as the triangles do not have
neighbors along the borders. In these cases, we assign a
triangle index —1 to indicate a missing neighbor for later
processing. Likewise, we set the parent and child triangle
indices of each initial triangle to —1 to indicate that it is a
root triangle that has no child triangles assigned yet. Once
all triangles have been stored, the triangle buffer contains a
coarse discretization of the heightfield that could already be
rendered. It only needs to be recreated when the extents of
the heightfield change. Changes of the heightfield values do
not invalidate the triangulation, but only require resampling
of the existing vertex positions as discussed in [Section 6]

6 VERTEX SAMPLING

While the x and y coordinates in the 2D plane of all created
triangle vertices follow from specified rules, the height
component has to be acquired from the given heightfields
through sampling. In our algorithm, this needs to happen in
three different stages: (1) After the initial triangulation, (2)
for each newly created vertex during subdivision, and (3)
after the heightfield data or their sampling strategy change.
For the sake of flexibility, we separate the tessellation from
the heightfield data and their sampling strategy with the
definition of a sampler interface that returns a single ab-
solute height value for a given 2D world-space position.
Through this interface, many existing sampling strategies
can be used, ranging from simple bilinear interpolation
within a regular grid to the approximation of scattered

5

data with thin-plate splines. With the use of a per-vertex
heightfield index introduced in each vertex can
be assigned a different sampler. This is particularly useful
when using multiple heightfields, as in our use case illus-
trated in [Fig. 1]

However, our sampler interface and therefore the pro-
posed tessellation method are limited by the assumption
that a heightfield value for a given 2D position is unique
and constant until the heightfield data change, which
the caching of vertex positions relies on. This excludes
more advanced sampling strategies that integrate prefiltered
heightfield data in a multi-resolution data structure such as
mipmaps for filtered sampling, which is a useful approach
to reduce popping effects and aliasing during subdivision.
Such techniques provide data values at different levels of
detail for the same position, of which the most suitable ones
are selected based on factors such as the current camera
perspective and data availability when rendering out of
core, and are then blended for smooth transitions between
levels of detail. Height values of all vertices might then
change continuously and require resampling of all vertices,
which is exactly what caching should prevent.

In our application, we mostly rely on C'-continuous
adaptive heightfield interpolation [6] suitable for height-
fields defined on quadtrees. We assume that all height-
field data needed in the current frame are already and
completely available in GPU memory. We display dynamic
water heightfields generated by a GPU-based shallow water
simulation on top of static digital elevation models. If the
simulation time step changes by playback or manual nav-
igation through time, usually all water heightfield values
change at once, which is why it is the most efficient in our
application to just loop over and resample all vertices when-
ever the corresponding heightfield changes. This means that
in the worst case of a continuously changing heightfield, the
benefit of vertex caching is completely lost, while triangle
caching still remains effective.

7 UPDATE OF LoD STATE

In general, the purpose of view-dependent tessellation is to
maintain a certain level of detail (LoD) with respect to the
visible geometry at any time. As processing and rendering
time of the heightfield increase with an increasing triangle
count, the goal is to keep the number of triangles as low
as possible and only subdivide where necessary to achieve
a certain LoD. This LoD is subject to a defined metric.
There are a variety of established LoD metrics, many of
them considering the error made by approximating the
continuous heightfield surface with piecewise linear trian-
gles. An overview of suitable object-space and image-space
error metrics is provided by Pajarola and Gobbetti [13], for
example. The choice of the error metric is independent from
the functioning of our tessellation pipeline, but it has to be
suitable for the concrete application, as each metric requires
a tradeoff between performance and visual quality. In our
application, we want to minimize expensive heightfield
sampling to maintain real-time performance. This is why
we restrict ourselves to a simple LoD metric similar to that
of Cantlay [33] that is solely based on the triangle density in
screen space, independent of the underlying heightfield.
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Fig. 5: Subdivision rules. Eight different triangle types can occur in a triangulation (top row). Each type can be subdivided
into two triangles of other types (bottom row). Of these two triangles, the one we consider the first child triangle is marked
with a star. Any recursive application of these rules to the initial triangulation leads to a valid 8-coloring of the plane.

Since triangles completely outside the camera’s view
frustum do not contribute to the scene, the first step is to
exclude all these triangles from subdivision with a view
frustum intersection test. For each remaining triangle, we
calculate the screen-space lengths of its edges. A triangle
needs to be subdivided if its longest edge in screen space
is longer than a predefined maximum edge length in screen
space. This maximum edge length, calculated from a user-
defined value specified in pixels for better usability, defaults
to 10px. If, however, the longest edge in screen space is
shorter than half the predefined maximum edge length, the
triangle’s parent triangle would better match the desired
LoD, so the current triangle needs to be merged. In any
other case, the triangle should be kept unchanged.

We apply these rules to each triangle in a compute
shader and store the determined action—subdivide, merge,
or keep—as LoD state with each triangle. This simple in-
terface also allows for the use of any other LoD metric,
provided it can assign one of the three mentioned actions to
each triangle based on its current state. With the heightfield
index stored for each triangle, it is also easily possible to
use different LoD metrics or parameters for different height-
fields, e.g., to reduce the LoD of a decoration heightfield.

8 TESSELLATION LooP

Once the LoD state of all triangles has been updated, the
tessellation loop can be invoked to perform the required
triangulation changes. The tessellation loop is the core of
our algorithm that iteratively refines all triangles’” LoD lo-
cally until either the target LoD or a termination criterion
is reached. Within this loop, the triangles in the triangle
buffer are modified with a sequence of compute shaders.
In this section, we will explain the subdivision and merging
shaders in detail, which will be extended with simple op-
timizations in Triangles that require subdivision
are first subdivided concurrently within each graph color
group, while the individual graph color groups are pro-
cessed sequentially. After subdivision, merging is applied
similarly to all triangles that require it within each graph
color group. If any triangles have changed, we now repeat
this process unless a termination criterion is triggered.

$ $
/\ﬂ\

Fig. 6: Valid combinations of triangle types for subdivision
and merging (top to bottom and vice versa). The star marks
the triangle selected for subdivision or merging.

8.1 Subdivision Rules

In order to subdivide the triangles in a deterministic and
thread-safe way, we need to define suitable subdivision
rules. Given the very simple and regular initial triangula-
tion with only four different types of triangles illustrated
in we only need to define equally simple rules to
break up these triangles into smaller versions of the same
type. Our rules illustrated in achieve this in two
steps. The initially given triangle types 0 to 3 correspond-
ing to graph colors can be split along the median to the
hypothenuse, i.e., the segment from the first vertex to the
hypothenuse’s centroid. This is commonly known as longest-
edge bisection. As shows, four new triangle types
are obtained by this split, which we number from 4 to 7.
Subsequently, these four types can again be split into two
triangles each of the original types. In this illustration, a star
marks the triangle that is its parent’s first child triangle.

As mentioned before, we only allow subdivision of
triangles that share a hypothenuse with triangles that are
also supposed to be split. While the eight triangle types
can be arranged in mutliple different ways, there is only
one arrangement for each triangle type where this condition
is met. This simplifies dealing with eight different triangle
types to dealing with only four valid arrangements for
subdivision, which are illustrated in Even more,
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Fig. 7: Prevention of Tjunctions. An arbitrary valid combination of triangle types (a) can be subdivided without involving
the adjacent triangles (b). Tjunctions would occur when subdividing the resulting triangles again (c), which is not possible
because none of the resulting triangle arrangements of (b) is a valid combination for subdivision. Only after splitting the
adjacent triangles (d), the inner triangles can be split again and introduce no T-junctions (e).

they pair each two triangle types with successive graph
color values. This allows us to only consider triangles of
graph colors 0, 2, 4, and 6 for subdivision, knowing that
their neighbor along the hypothenuse either has a graph
color value one higher than their own, or no subdivision is
possible at all. These triangles are marked with a star in the
top row in

Adhering to this rule automatically guarantees a water-
tight triangulation by making T-junctions impossible. This
is illustrated in with the example of two triangles
of types 0 and 1 and their adjacent triangles along the
catheti (a). Both triangles share the hypothenuse, which
means that splitting them does not involve the adjacent
triangles. After subdivision, the hypothenuses of all four
new triangles are the edges that have been the catheti
before, which they share with the adjacent triangles (b).
T-unctions (marked with red circles) could only occur if
these triangles were split again without any regard of the
adjacent triangles (c). However, this is not possible as none
of the arrangements in (b) is considered a valid combination
of triangle types for subdivision. Subdivision in this state
can only take place in the adjacent triangles if necessary and
possible (d). Only if that is the case the inner triangles can be
subdivided again (e). This also implies that the subdivision
levels of adjacent triangles can only differ by at most one.

8.2 Subdivision

At this point, every triangle that requires subdivision ac-
cording to its LoD state should be subdivided. However, this
has to happen separated by graph color and according to the
subdivision rules. This is why we loop over all triangles four
times for the four different graph colors 0, 2, 4, and 6, each
time only considering triangles of the respective graph color.
For each triangle ty of that graph color and its neighbor
along the hypothenuse t;, we then perform the following
checks to determine whether to continue with subdivision:

o The deleted flags are not set

o The graph color of ¢; is one higher than that of ¢,

o The first child triangle indices are —1

e The second adjacent triangle of ¢; is £

e The LoD state of either triangle or any of their
adjacent triangles is subdivide

The actual subdivision of ¢y and ¢; has four steps: Cre-
ating a new vertex at the center of the shared hypothenuse,
creating four new child triangles, updating the information
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Fig. 8: Overview of adjacent triangles (black) and ver-
tices (blue) of two parent triangles ¢y and ¢; (left) and their
respective child triangles tg ¢, to,1 and ¢ 0,%1,1 (right).

of the two old triangles, and updating the adjacency infor-
mation of the four adjacent triangles.

Creating the new vertex that all four child triangles
share is conceptually simple, but can be quite expensive.
While the x and y coordinates are simply calculated as the
center of the segment between the second and third vertex
of 1o, the z coordinate requires sampling the heightfield data
with some interpolation method. Bilinear interpolation of
data defined on a regular grid can be performed efficiently
with the help of hardware texture filtering, but higher-order
interpolation becomes more costly. For example, we use
a third-order interpolation that handles both regular and
adaptive grids [6], which requires a significant number of
memory accesses. A benefit of our method is that vertex
positions will be cached such that created vertices only
need to be resampled if the heightfield data change. This
legitimates the use of more expensive interpolation. The
new vertex is added to the vertex buffer at the next free
index, which is obtained as described in |[Section 4

The four new triangles tg o, to,1,%1,0,t1,1—two children
of ¢y and t; each—are assigned the parent index of the
respective parent triangle and inherit the value of the
parent’s heightfield index. The graph colors are assigned
according to the rules illustrated in Since the new
triangles have a different size, a new LoD state is assigned
to each triangle according to the LoD function introduced
in Due to the consistent ordering, the assign-
ment of the new adjacent triangle indices and vertex in-
dices is straightforward. An example in illustrates
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these assignments. Let v,, be the index of the newly cre-
ated vertex, and (voo,v0,1,%0,2), (V1,0,%0,2,v0,1) the ver-
tex indices of tp and ¢, respectively. Then, the vertex in-
dices of the new triangles are (v, V0,2, ¥0,0), (Un,v0,0,v0,1),
(Un,v0,1,v1,0), and (vp,v1,0,002). Analogously, for the
adjacent triangles (ao,0,t1,a0,2) and (a1,0,%0,a1,2) of o
and t;, respectively, the adjacent triangles of the new trian-
gles are (t1,1,a0,2,t0,1), (t0,0,@0,0,t1,0), (to,1,01,2,%1,1), and
(t1,0,@1,0,%0,0)-

After the new triangles are stored, we assign the indices
of triangles tg o and %1, as first child triangle indices to
triangles ¢y and t;, respectively. Finally, we update the
adjacency information of the adjacent triangles to reference
the newly created ones instead of their parents. Each of the
adjacent triangles ag o, ao,2, @1,0, and a; 2 contains adjacency
information as a triple of triangle indices, of which one
value equals the index of the parent triangle ¢, or ¢;. Since
these triangles can share any of their edges with the parent
triangle, the component index of the parent triangle’s index
in the triple is only known at runtime, so we cannot define
static index assignments as for the other values. Instead,
we determine the component index i € [0,2] dynamically
by comparing the given values to the indices of ¢y and ¢;,
respectively. Let afj  be the ith component of the adjacency
information of adjacent triangle ag,o. If af o equals to, we
assign to 1 to it, and tg to a%m, respectively. Analogously,
we assign tq 1 to aﬁ,o and ¢ 0 to a7i72 if they equal ¢;.

From this last step, it becomes obvious why we use task
scheduling with graph colors to prevent concurrent process-
ing of neighboring triangles. If neighboring triangles were
subdivided at the same time, new triangles in a thread could
receive obsolete adjacency information from their parents,
referring to triangles that were also subdivided instead of to
their children. This would corrupt the entire triangulation.
Our approach avoids this by running the subdivision on
independent groups of triangles in four separate compute
shader dispatches with explicit synchronization inbetween
to wait for completion of the previous operations. Another
approach would be to subdivide triangles concurrently, but
use a separate triangle buffer to store partial subdivision
results, which are then merged together to a new trian-
gle buffer in a second pass. This, however, comes at the
cost of doubling the GPU memory consumption. A third
approach would be to handle low-level synchronization in
the subdivision shader itself to prevent reading of obsolete
adjacency data of concurrently processed triangles with
inter-thread communication. While this would most likely
increase the runtime performance, it comes at the cost of a
more complex and error-prone implementation that requires
careful consideration in future work.

8.3 Merging

Analogous to subdivision, merging of triangles requires a
thread-safe way of updating the adjacency information of a
triangle’s adjacent triangles, meaning that we again need
to group merging threads by the triangles” graph colors.
The main task of merging is to remove four child triangles
created by a previous subdivision and reinstate their two
parent triangles. This means that the operation only has to
run once for every four triangles. It does not matter which of
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the four triangles we select for this, as long as the selection is
consistent. We select the triangle that is the first child of the
parent triangle with the lower graph color. These triangles
are marked with a star in the bottom row in[Fig. 6| From this
follows that merging needs to be performed for triangles
with the graph colors 0, 2, 4, and 7. We again loop over
all triangles four times for the four different graph colors,
each time only considering triangles of the respective graph
color, and check whether merging should be performed. For
every triangle ¢ of the current graph color, we identify the
parent triangle ¢y, the parent’s second adjacent triangle ¢;,
both parents’ children 40, %01, t1,0, and t;1,1, and then
sequentially check the following:

o The deleted flags are not set

e The parent triangle index of ¢ is not —1

o The first child triangle of parent ¢ is ¢

e The second adjacent triangle of ¢; is %

e The graph color of ¢y is lower than that of ¢;

o The first child triangle index of all children is —1
e The LoD state of all children is merge

o The LoD state of neither tg nor t; is subdivide

Merging itself consists of four steps: Removing the four
involved child indices from their parents, updating the
parents” adjacency information, updating the adjacency in-
formation of the parents’ neighbors, and removing the child
triangles and their common vertex.

The reference of the child triangles is removed from their
parents tg and t; by simply setting their first child triangle
indices to —1. Updating their adjacency information is more
involved, as it requires to assign the respective neighbors of
the child triangles. Again, we refer to|[Fig. 8 for an annotated
example. Let (t1,1, ao,2,t0,1), (0,0, @0,0, t1,0), (to,1,a1,2,t1,1),
and (t1,0,a1,0,%0,0) denote the adjacent triangle indices of
child triangles to,o, t071, t170, and t171. Then, (a070,t1,a0,2)
and (a1,0,%0,01,2) are the new adjacent triangle indices
assigned to parents ¢y and ?;, respectively, which reverses
the assignment during subdivision (see [Subsection 8.2).

In the next step, we also have to update the adjacency
information of the adjacent triangles ag o, ao,2, @1,0, and a1 2,
which are the child triangles’ respective neighbors along the
hypothenuse. However, these adjacent triangles can again
have an arbitrary triangle type and orientation, such that
we need to dynamically find the component index ¢ € [0, 2]
of the value to replace. Let a , be the ith component of the
adjacency information of adjacent triangle aq o. We assign tg
to af o if it equals to,1, as well as to aj , if that equals #g,o.
Analogously, we assign ¢; to aZLO if it equals t; 1, as well as
to af , if that equals 1 o.

After the parent triangles have been reinstated in the
triangulation, we can remove the obsolete child triangles
and their common vertex from the respective buffers. We do
this by adding the vertex index and the four triangle indices
to the respective free index buffers described in
Finally, we set the deleted flag of the four triangles to ignore
them in subsequent triangle selection passes.

The compute shader dispatches for the four graph col-
ors are synchronized explicitly. After the last dispatch is
completed, the triangulation is either one step closer to the
target LoD or it has already been reached everywhere. If any
triangle has been subdivided or merged, more changes to
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the triangulation are potentially needed and that we should
start another iteration. In this case, we first check for two cri-
teria that lead to the termination of the tessellation loop: The
number of triangles selected and processed in the current
iteration was less than a user-defined minimum number of
triangles, which we set to 100. Or a user-defined time budget
for the entire tessellation loop, which we set to 5ms, has
been exceeded. Both termination criteria weaken the strict
LoD criterion to find a compromise between visual quality
and processing time. Any unprocessed triangles will then
be refined in the next frame.

9 RENDERING

As all vertices have already been sampled on the heightfield
during the initial tessellation or subdivision, no vertex sam-
pling is required during rendering. However, since triangles
frequently change during camera movements through sub-
divisions and merging, so do the surface normals, which
leads to noticeable flickering of the illumination. A common
technique to avoid this effect when using adaptive tessel-
lation is to reconstruct the heightfield normals from the
central differences of sampled height values per fragment.
This results in a temporally stable illumination. Finally, for
animated water heightfields, we use vertex displacement
for animated waves and water surface shading based on
a velocity field [6]. An example result of the visualization in

our system is shown in

10 OPTIMIZATIONS

In this section, we provide crucial runtime optimizations to
the naive implementation outlined in the previous sections.
In particular, we address the SIMD architecture of current
GPUs that performs best without dynamic branching in
shader code, and relies heavily on caching of fetched data.
For implementation details, we refer to the implementation
of our solution in the supplemental material of this paper.

10.1 Subdivision Triangle Selection

The triangle subdivision discussed in [Subsection 8.2]is the

most expensive step of our algorithm, because we need to
dispatch a compute shader for each of the graph colors 0, 2,
4, and 6 and wait for their completion. Therefore we want
to make this step as efficient as possible. For the responsible
compute shader, this means to avoid all unnecessary rule
checks and branching. We accomplish this by moving all
checks to a preceding compute shader that selects all tri-
angles that must and can be subdivided according to our
rules. In this selection compute shader invoked for each
existing triangle, we check whether all triangles involved in
its potential subdivision exist, have no children, match one
of the valid combinations depicted in [Fig. 6] and have to be
subdivided according to their own LoD state or that of their
neighboring triangles. If a triangle passes all of these checks,
we write its index into a buffer for its corresponding graph
color with the help of an atomic counter. If any triangles are
selected, subdivision is invoked with one thread for each of
these triangles. Otherwise, we directly proceed to merging.

10.2 Merging Triangle Selection

Similar to subdivision, the merging compute shader has
to be executed for four different graph colors in sequence.
Again, waiting times between executions can be reduced by
moving all checks for the triangle selection to a preceding
compute shader. In this compute shader invoked for each
existing triangle, we check whether the four triangles in-
volved in a merge operation exist, are not root triangles,
do not have children, match one of the valid combinations
depicted in and are flagged to be merged. Further-
more, the selected triangle has to conform to our rule of
being the first child of the parent triangle with the lower
graph color, and none of the two parents of the involved
triangles must be flagged to be subdivided. If a triangle
passes all of these checks, we write its index into a buffer
for its corresponding graph color with the help of an atomic
counter. Only for these triangles, the merging compute
shader is then invoked.

10.3 Triangle Buffer Compaction

After tessellation, all triangles are scattered in the triangle
buffer, including deleted triangles and parent triangles that
should not be displayed. While it would be possible to
directly render all triangles from this buffer and discard
those flagged as deleted and those with child triangles, it
is faster to filter the triangles in a separate step. Whenever
the triangulation changes, we iterate over the buffer in a
compaction compute shader and write each leaf triangle’s
triple of vertex indices to a compact vertex index buffer
with the help of an atomic counter. With the result, we can
render the triangulation as common indexed geometry in
a highly efficient manner. If we are dealing with multiple
heightfields that require different shading effects, we also
evaluate the heightfield index of each triangle and maintain a
different vertex index buffer for each heightfield, which we
then render separately.

11 EVALUATION

We evaluate the practicability of our solution concerning
runtime performance and accuracy in comparison to previ-
ous work. While several CPU-based tessellation methods
have similar features to our method such as watertight-
ness, incremental updates, and unlimited levels of detail,
performance typically lags behind purely GPU-based meth-
ods due to unavoidable CPU-GPU communication and less
parallelization. This is why we only consider GPU-based ap-
proaches, which are recursive tessellation by Lee et al. [30],
adaptive GPU tessellation with compute shaders by Khoury
et al. [24], and cached adaptive tessellation with improved
triangle encoding by Kerbl et al. [25]]. For a fair comparison
of the individual methods, we implemented them in a
common framework using OpenGL that is available in the
supplemental material of this paper. The methods of Khoury
et al. and Kerbl et al. have been proposed with just one
iteration per frame, such that the LoD of the visualization
only converges towards the target LoD over several frames.
We have extended both methods with a simple loop that re-
peats the tessellation process until the target LoD is reached
within a single frame. For the performance benchmark, we
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Fig. 9: Average frame durations of GPU-based tessellation methods with bilinear (top) and biquintic (bottom) interpolation
during camera animation. Our method (red) achieves overall higher and more stable performance than the state of the art
in terms of runtime (green), especially under heavy load with a substantial amount of vertex sampling.

have not replaced the LoD metric of both methods with
our own, as we found that our LoD metric leads to slightly
higher triangle counts than the proposed one, which would
skew the performance comparison.

As a test scene, we use a procedural heightfield that is re-
constructed using both fast bilinear and costly, but more ac-
curate (as evaluated by Kidner [34]) biquintic interpolation.
The heightfield is defined on a domain of 10km x 10km
with a cell size of 1m x 1m. For all methods, we set the
minimum triangle edge length in world space to 0.1 m and
the desired triangle size in screen space to 5 px.

11.1

We measured the runtime performance on a system using
an Nvidia Titan V GPU and an Intel Core i7-9700K CPU.
The image resolution was 1920 px x 1080 px. For the mea-
surements, we have prepared a camera animation along
a fixed path that takes exactly 60s. We subdivided this
time range into 600 intervals of 100 ms each, calculated the
average frame duration within each of these intervals, and
averaged these results over five animation runs each. We
omitted the first interval to exclude irrelevant calculations
for the initialization of the methods. The resulting average
frame durations are provided in for bilinear (top)
and biquintic (bottom) interpolation. Our implementation
considered here contains all optimizations described in [Sec
and achieves a frame duration of 3.7 ms (bilinear)
and 3.8ms (biquintic) averaged over all frames. Without
the optimizations, frame durations increase to an average
of 14.0ms and 14.4 ms, respectively.

Runtime Performance

The method by Lee et al. (orange), which is the only
tested method from previous work that provides watertight
tessellation, performs worst, because it has to generate
the entire triangulation from scratch every frame. Due to
space constraints, we cropped the frame duration plot of
this method using biquintic interpolation bottom),
which peaked at 65ms. Among the other three methods,
our method (red) has the most stable frame duration with-
out exhibiting any significant spikes under heavy load, in
contrast to the methods of Khoury et al. (blue) and Kerbl
et al. (green). This is in part due to the pre-defined time
budget for the tessellation loop set to 5ms, and in part
due to vertex caching, which makes our method largely
independent of the employed vertex sampling strategy. This
becomes especially clear in the comparison of the two plots,
in which the frame durations of our method are almost
identical despite the considerably higher cost of biquintic
interpolation. In contrast, the frame durations of the other
incremental methods peak at more than double the frame
duration of our method, as the memory-efficient triangle en-
coding of these two methods comes at the cost of resampling
all vertices of the cached triangulation each frame. A further
benefit of our method is the fast processing with a stationary
camera, as tested in the last 10s of the animation. Then, the
entire tessellation loop and triangle buffer compaction are
skipped, leaving only the rendering of the compact triangle
buffer. This results in a very high frame rate for interactive
tasks such as sketching or object manipulation in 3D.
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TABLE 1: Evaluation of Triangulation Quality

Triangle size # Triangles in mio. RMSE in m
Max. Avg. Max. Avg.
= 10 px 3.15 1.35 9.70 3.44
‘f 5 px 10.75 4.99 9.73 2.07
3 3 px 25.55 10.58 5.72 1.17
. 10 px 1.24 0.23 9.20 3.25
T 5 px 4.79 0.79 9.18 2.15
ol 3 px 13.11 156 4.09 1.00
. 10 px 0.34 0.12 9.20 2.93
g 5 px 1.37 047 8.98 1.77
3 px 3.82 1.15 3.46 0.89
11.2 Accuracy of Surface Approximation

To evaluate the quality of the triangulation produced by
our tessellation method in comparison to the others, we
recorded the number of generated triangles and the devi-
ation of the triangulation from the ground truth each frame
during the camera animation. The deviation is estimated
from the root mean square error (RMSE), where the error is
the per-fragment difference between the height of the raster-
ized, visible portion of the triangulation and the heightfield
surface obtained from the continuous noise function. We
aggregate both the number of generated triangles and the
RMSE with maximum and average operators over the entire
camera animation to obtain average and peak values, which
are provided in For a fair comparison, we have
integrated our LoD metric into the method by Kerbl et al. We
omit the method by Khoury et al. here, as the triangulations
of the two methods are equivalent.

It can be seen that our tessellation consistently gener-
ates the lowest number of triangles while also having the
lowest deviation from the ground truth, independent of
the desired triangle size. As we used the same LoD metric
for all three tessellation methods, we attribute the vary-
ing accuracy to the different employed subdivision rules.
Hardware tessellation as used in the method by Lee et al.
operates on patches subdivided according to inner patch
and edge tessellation factors, which do not allow for fine-
grained LoD control of individual triangles within the patch.
In order to guarantee a maximum triangle size in screen
space, many triangles in the patch are over-tessellated as a
result, which is reflected by the high number of generated
triangles and, in succession, the poor runtime performance.
The method by Kerbl et al. produces a triangulation of much
higher quality, allowing for a more accurate approximation
of the heightfield surface with significantly less triangles.
However, the maximum number of triangles shows a five- to
eightfold increase over the average during some sequences
in the animation, which we identified as the extreme close-
ups. At the same time, the high number of triangles does
not reduce the approximation error. We suspect that this
behavior is caused by disregarding triangle visibility during
subdivision and merging, which prevents merging of invis-
ible triangles against the LoD metric. In our method, over-
tessellation is significantly reduced, as our subdivision rules
consider triangle visibility and allow for the subdivision of
almost any pair of triangles to an arbitrary LoD. This allows
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us to refine triangles precisely where needed.

In summary, our method exhibits stable real-time perfor-
mance competitive with the fastest non-watertight methods
from previous work, while at the same time providing a
highly accurate approximation of the heightfield surface
without visual artifacts caused by T-junctions. The more
complex the used surface reconstruction is, the more vertex
caching reduces the cost of tessellation and rendering, which
allows our method to outperform the state of the art.

12 CONCLUSIONS AND FUTURE WORK

We presented a novel method for the watertight tessellation
of heightfields that offers steady real-time performance and
high reconstruction accuracy. Our solution addresses the
special requirements of geoinformation systems regarding
complex heightfield reconstruction and interactivity and
can be integrated into many existing systems as drop-in
replacement. A current limitation of our method is the
assumption that heightfield values of vertex positions are
unique and depend only on changes in heightfield data, not
on the triangle LoD or camera perspective. This is essential
for vertex caching, but precludes the immediate use for
prefiltered heightfields and many out-of-core approaches
that stream and blend between data of different LoDs at
runtime, which we will address in future work.

By relying on explicit triangle adjacency information, we
have solved the problem of independent triangle splitting
that causes T-junctions, but have introduced a scheduling
problem to avoid read-write conflicts between triangles
trying to update the same adjacency information concur-
rently. Our solution of task scheduling by graph coloring is
well-established for distributed systems, but not necessarily
optimal for GPUs. It requires expensive synchronization
between the compute shader dispatches for the individual
graph colors. A single dispatch with fine-grained synchro-
nization between threads could further improve the runtime
performance, which we will also investigate in future work.
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