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A B S T R A C T

This paper presents an integrated modeling framework aiming at accurate predictions of flood hazard from
heavy rainfalls. The accuracy of such predictions generally depends on the complexity and resolution of the
employed model components. We propose an integration of complementary models in one framework that
facilitates GPUs to improve accuracy and simulation time. The spatially distributed runoff model integrates
surface flow routing based on the full shallow water equations, infiltration based on the Green–Ampt equation,
and interception. In urban areas, the runoff model is coupled with the Storm Water Management Model
(SWMM). The integrated model is validated and tested on laboratory, rural and urban scenarios with regards
to accuracy and computational efficiency. The GPU acceleration yields speedups of 1000 times compared to
a CPU implementation and enables the coupled simulation of flash floods at 1 m resolution for an urban area
of 200 km2 in realtime.
1. Introduction

Floods are increasing in many parts of the world due to climate
and land use change (Chen et al., 2018; Blöschl et al., 2019) causing
disproportionally high damage in urban regions (Jongman, 2018). To
mitigate future flood damage, detailed models that assist in assessing
the flood hazard spatially are crucial (Rosenzweig et al., 2021). In
contrast to lumped models, spatially distributed models allow for an
explicit representation of spatial variations and inhomogeneities in
input data, such as topography, vegetation, soil characteristics, and
urban features. Notwithstanding scale issues (Grayson and Blöschl,
2001), there is a lot of value in spatially distributed high-resolution
modeling for management purposes. However, higher resolutions lead
to slower simulations. In addition, ensemble simulations that quantify
the uncertainty of the predictions and provide insights into the effects
of parameter variation increase the computational burden even further.
Thus, the challenge is to advance the capabilities of numerical modeling
while balancing simulation performance and model accuracy.

To accurately represent the topography, the resolution of the sim-
ulation grid should be chosen accordingly. As a rule of thumb, terrain
features should be covered by at least 3 cells to be represented ex-
plicitly (Gallegos et al., 2009; Fewtrell et al., 2011; Horváth et al.,
2020). For urban areas, a resolution of 2 m or less is considered
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E-mail address: buttinger@vrvis.at (A. Buttinger-Kreuzhuber).

necessary to accurately represent buildings, curbstones, and other fea-
tures (Fewtrell et al., 2011; Dottori et al., 2013; Xing et al., 2018).
Moreover, simulations at submeter resolutions are useful for assessing
the benefits of small-scale alteration of street topography for flood
risk management purposes at low costs (de Almeida et al., 2016). The
simulation grid is typically either a structured Cartesian grid (Costabile
et al., 2013; Horváth et al., 2015; Buttinger-Kreuzhuber et al., 2019),
or an unstructured triangular mesh (Bermúdez et al., 1998; Hou et al.,
2015; Fernández-Pato et al., 2016). Unstructured meshes are able to
incorporate complex geometries, however they require time-consuming
mesh generation. In contrast, structured grids lack the pre-processing
step at the expense of poor resolution of topographic features not
aligned with the grid. Thus, they usually require a higher resolution
in comparison to unstructured meshes to enable the same level of
accuracy.

The shallow water equations (SWEs) are typically used for describ-
ing surface flow. Due to the Courant–Friedrichs–Lewy (CFL) condition,
a high spatial resolution requires a fine temporal discretization. There-
fore, the total amount of computational work increases and in turn
slows down simulation runs. To accelerate the simulations, one possibil-
ity is to simplify the shallow water model, for example, using diffusive
vailable online 3 August 2022
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wave (sometimes also called zero-inertia) or kinematic wave approx-
imations (Neal et al., 2012; Le et al., 2015; Fry and Maxwell, 2018;
Yang et al., 2020). For urban regions, the full or dynamic SWEs in com-
bination with shock capturing schemes are able to reproduce observed
hydraulic behavior and velocities more accurately than simplified mod-
els (Kvočka et al., 2015; Costabile et al., 2020). Cozzolino et al. (2019)
conclude that the preferred model for floodplain simulations should be
the full 2D SWEs as simplified models often suffer from a poor repre-
sentation of receding flows and bed discontinuities. Still, issues such as
wetting and drying over complex terrain pose a numerical challenge
and constitute an active area of research (Chen and Noelle, 2017; Xia
et al., 2017; Buttinger-Kreuzhuber et al., 2019). If not treated properly,
numerical instabilities occur and lead to slow simulations. The full SWE
offer a model to simulate both complex open channel hydrodynamics
and overland flow processes (Costabile et al., 2013; Fernández-Pato
et al., 2016), in particular at high resolutions (Caviedes-Voullième
et al., 2020). Recent studies (Costabile et al., 2017; Aricò and Nasello,
2018; Caviedes-Voullième et al., 2020) point out that solvers for the
full SWEs might in fact require less computational time than their zero-
inertia counterparts. Popular scheme choices for the full SWEs include
discontinuous-Galerkin (DG) (Kesserwani et al., 2008; Vater et al.,
2017; Ayog et al., 2021) and finite volume (FV) (Audusse et al., 2004;
Horváth et al., 2015; Hou et al., 2014; Buttinger-Kreuzhuber et al.,
2019; Dong and Li, 2021) methods. Second- or higher-order FV schemes
are more accurate than their first-order counterparts, which are prone
to numerical diffusion (Audusse and Bristeau, 2005; Noelle et al.,
2006, 2007; Li et al., 2014; Navas-Montilla and Murillo, 2015; Hou
et al., 2015). Most second-order schemes follow a monotonic upstream-
centered scheme for conservation laws (MUSCL) approach (Van Leer,
1979), resulting in a shock-capturing scheme with reduced numeri-
cal diffusion yet without unphysical oscillations. However, compared
to first-order schemes, the higher accuracy of second-order schemes
comes at the price of higher runtimes due to a reduced CFL constant
and second-order time integration. Thus, in large-scale flood modeling
first-order schemes are still commonly used (Xia et al., 2019; Echever-
ribar et al., 2019; Morales-Hernández et al., 2021). In complex flash
flood scenarios, it is not immediately clear whether the application
of a second-order scheme pays off in terms of accuracy and required
computational work.

A promising way to achieve computational speedups is the execu-
tion in a massively parallel fashion on supercomputers (Noh et al.,
2018; Kuffour et al., 2020) or on graphics processing units (GPUs) (Las-
tra et al., 2009; Brodtkorb et al., 2012; Vacondio et al., 2014; Lacasta
et al., 2015; Le et al., 2015; Horváth et al., 2016; Xing et al., 2018;
Xia et al., 2019; Morales-Hernández et al., 2021). To achieve a high
computational performance on GPUs, regular grids are a convenient
choice due to the structured arrangement of cores (Morales-Hernández
et al., 2020). Unstructured meshes should be reordered for efficient
memory access patterns allowing for coalescent transactions (Lacasta
et al., 2015). Cutting-edge flash flood models are on the verge of
handling resolutions of 5 m for large regions of up to 2500 km2,
r, 100 million cells (Xia et al., 2019). Traditionally, cities are split
nto multiple smaller simulation regions that tend to underestimate
nundation (Xing et al., 2018). Thus, high-resolution simulations at
arge scales, e.g. spanning entire cities, are needed.

A variety of infiltration models exist, including the empirical Soil
onservation Service (SCS) curve number method (Chow et al., 1988;
ureli et al., 2020), the empirical Horton model (Fernández-Pato et al.,
016; Fernández-Pato and García-Navarro, 2018), the semi-empirical
reen–Ampt model (Fiedler and Ramirez, 2000; Simons et al., 2013;
elestre et al., 2017; Fernández-Pato et al., 2016), and more com-
lex models such as Richards equation (Maxwell, 2013; Le et al.,
015; Kuffour et al., 2020) although capturing macropore flow (Zehe
t al., 2007) remains a challenge. The model’s ability to capture the
2

ocal effects of green infrastructure (GI), such as green roofs, rain
ardens, or bioswales, is important in urban flood resilience plan-
ing (Berland et al., 2017; Fry and Maxwell, 2018; Rosenzweig et al.,
021). For urban flood hazard modeling, the flow in sewer systems
nd its interaction with the overland flow may be relevant. The Storm
ater Management Model (SWMM) is an established tool for routing

tormwater in sewer systems. It is developed by the Environmental
rotection Agency (EPA) as an open-source software package (Ross-
an, 2017). A widely used approach to bidirectionally couple urban
rainage networks to overland flow are dual drainage models (Leandro
nd Martins, 2016; Yang et al., 2020; Li et al., 2020; Rosenzweig et al.,
021). The interaction terms are commonly based on the water level
ifferences between the sewer nodes and the surface water (Djordjević
t al., 2005; Chen et al., 2016; Rubinato et al., 2017; Fernández-
ato and García-Navarro, 2018). Previous coupled models featuring a
ynamic sewer network simulation, e.g. Leandro and Martins (2016),
ernández-Pato and García-Navarro (2018), Noh et al. (2018), Yang
t al. (2020), were run on central processing units (CPUs) and not
xploiting recent leaps in model acceleration facilitated by GPUs. As
he coupled models runtimes are typically governed by the surface
imulation (Noh et al., 2018), fast runoff models are crucial.

In this paper, we present a coupled modeling framework for fast
imulations in urban and rural settings. The framework includes several
omponents considered relevant in rainfall–runoff modeling and flash
lood hazard assessment, that is, spatially distributed interception and
nfiltration, an accurate representation of overland flow, and subsurface
low in sewer networks. We go beyond current modeling practice by
sing both a spatially distributed rainfall–runoff model and a fully
idirectional coupling of the sewer network accounting for drains and
verflows at large scales and very high resolutions. We propose a novel,
ybrid coupling approach of a GPU-accelerated runoff simulation with
n established CPU sewer network simulation. We validate and test
he framework in laboratory, rural and urban scenarios. We answer
he question whether first-order or second-order schemes in the surface
low discretization of the full 2D SWEs should be favored in terms of
he workload–accuracy tradeoff. Moreover, we highlight the influence
f resolution and of the individual model components. Finally, we
ddress the extent of computational acceleration on a modern GPU for
igh-resolution simulations of entire cities.

. Methods

.1. Surface flow model

The full shallow water equations (SWEs) are used to describe the
urface flow and may be written in vector form as

𝑡𝐔 + 𝜕𝑥𝐅 (𝐔) + 𝜕𝑦𝐆 (𝐔) = 𝐒𝑏 (𝐔, 𝑏) + 𝐒𝑓 (𝐔) , (1)

here 𝐔 = [ℎ, ℎ𝑢, ℎ𝑣]𝑇 is the vector of conserved variables, ℎ represents
he water height, ℎ𝑢 is the discharge along the 𝑥-axis, and ℎ𝑣 is the
ischarge along the 𝑦-axis. 𝐅 and 𝐆 are the flux functions,
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The bed slope term 𝐒𝑏,
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models the fluid’s acceleration due to the gravitational forces. The
friction term 𝐒𝑓 ,
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accounts for the bed friction. Here, 𝑢 and 𝑣 are the average flow
elocities in 𝑥 and 𝑦 directions, respectively, 𝑔 is the gravitational
onstant, 𝑏 is the bed level (assumed to be time-independent), and 𝑛
s the Manning friction coefficient.

To integrate the interception and infiltration processes of the runoff
odel and the sewer model with the surface flow, coupling terms
𝑟 and 𝐒𝑠, respectively, are added on the right hand side of Eq. (1).
he coupling term for the sewers 𝐒𝑠 accounts for the specific sewer

exchange discharge 𝑞𝑒 (m/s). The source terms 𝐒𝑟 and 𝐒𝑠 are given by

𝐒𝑟 =
⎡
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. (5)

The runoff rate 𝑟𝑒 (m/s) is the difference between the effective precip-
itation rate and the effective infiltration rate. Its precise application is
defined in Section 2.4.

2.2. Spatio-temporal discretization of the surface flow

For the spatial discretization of the SWEs, the finite volume method
(FVM) was chosen on a uniform Cartesian grid. Although all runoff
components can also be discretized on unstructured grids, structured
grids require less pre-processing steps and enable fast memory access
patterns on the GPU (Morales-Hernández et al., 2020). Moreover there
is no need to store or optimize mesh connectivity. The FVM discretizes
the conserved variables 𝐔 as cell averages yielding a system of ordinary
differential equations for the cell averages 𝐔𝑗,𝑘(𝑡).

For the simulation of the overland flow, we employ either a first-
order accurate or a second-order accurate scheme. The first-order
scheme of Chen and Noelle (2017), to which we refer as CN scheme,
enables a better handling of flow states across bed discontinuities
than the original hydrostatic reconstruction (HR) scheme proposed
by Audusse et al. (2004). A second-order accurate extension of the first-
order CN scheme is presented in Buttinger-Kreuzhuber et al. (2019), to
which we refer as BH scheme. The second-order accuracy in space is
achieved through a minmod limiter. The minmod parameter is set to 1
in order to ensure robust and fast simulations (Horváth et al., 2020). At
wet–dry boundaries only the velocities are set to zero below a cut-off
water depth threshold. In the simulations this threshold is set to 0.1 mm.
The surface flow is discretized in time by the explicit Euler’s method
for the first-order CN scheme with a Courant–Friedrichs–Lewy (CFL)
constant of 0.5 to guarantee numerical stability and non-negativity of
the water depths. The second-order BH scheme is integrated in time
with Heun’s method and the CFL constant is set to 0.25. The CFL
condition restricts the time step 𝛥𝑡,

𝛥𝑡 ≤ CFL 𝛥𝑥
𝜎
, (6)

where 𝛥𝑥 is the uniform grid resolution and 𝜎 is the maximum of the
absolute values of the numerical wave speeds. The numerical wave
speeds at the cell interfaces are computed from the eigenvalues of the
Jacobian of the flux functions 𝐅 and 𝐆 (Buttinger-Kreuzhuber et al.,
2019). Both schemes are mass conserving and preserve lake-at-rest
steady states. The friction source term 𝐒𝑓 is evaluated in a semi-implicit
manner by splitting it into a coefficient-wise product of an implicitly
evaluated state and an explicitly evaluated friction term �̃�𝑓 (Brodtkorb
et al., 2012; Buttinger-Kreuzhuber et al., 2019).

2.3. Runoff model

The spatially distributed runoff simulation integrates the surface
flow routing component with an interception and an infiltration com-
ponent determining the effective surface runoff. First, part of the rain
is stored in the canopy of vegetation through interception. Second,
infiltration occurs as surface water percolates into permeable soils. The
remaining water effectively materializing during a rain event runs off
the surface as overland flow.
3

The rainfall intensity is given by a time- and space-dependent
precipitation rate 𝑝. The integrated interception component reduces the
effective precipitation and accounts for micro-topographic depressions
and losses due to vegetation. The interception storage capacity 𝐼𝑆 is
ypically roughly around 1 mm (Robinson and Ward, 2017), except for
ural forests, where values as high as 5 mm were found (Xiao et al.,
998). The cumulative interception 𝐼(𝑡) until time 𝑡 is modeled with

a constant non-negative rate 𝑖 until a predefined storage capacity 𝐼𝑆
is reached. Thus, the spatially distributed effective precipitation rate is
given by

𝑝𝑒(𝑡) =

{

𝑝(𝑡) − 𝑖 if 𝐼(𝑡) < 𝐼𝑆 ,
𝑝(𝑡) else.

(7)

The infiltration process is modeled by the Green–Ampt equation.
he cumulative infiltration 𝐹 up to time 𝑡 is

∫

𝐹 (𝑡)

0

𝐹
𝐹 + (𝜓 + ℎ)𝛥𝜃

𝑑𝐹 = ∫

𝑡

0
𝐾𝑠 𝑑𝑡, (8)

where 𝐾𝑠 is the saturated hydraulic conductivity. The difference 𝛥𝜃
between the initial water content and the saturated water content of the
soil is usually called effective porosity. The suction head 𝜓 represents
the capillary attraction of the water towards the soil voids. Solving
Eq. (8) for the infiltration rate 𝑓 , the time derivative of 𝐹 , we obtain

(𝑡) = 𝑑𝐹
𝑑𝑡

= 𝐾𝑠

[

(𝜓 + ℎ)𝛥𝜃
𝐹 (𝑡)

+ 1
]

. (9)

The proposed dynamic infiltration model accounts for the surface water
pressure via the surface water height ℎ. A shortcoming of the pre-
sented Green–Ampt model is the inability to account for multi-layered
soils, limited storage capacity, soil water redistribution in dry phases
and macropores. Extensions to overcome these limitations have been
proposed (Corradini et al., 2000; Gowdish and Muñoz Carpena, 2009;
Mohammadzadeh-Habili and Heidarpour, 2015; Leandro et al., 2016).

2.4. Temporal discretization of the runoff model

The Green–Ampt (GA) model is discretized in time with the implicit
Euler method solving Eq. (9) at every cell for every time step. The
infiltration depths 𝐹 at time step 𝑡𝑛+1 is given by

𝐹 𝑛+1 = 1
2
(

𝐹 𝑛 +𝐾𝑠𝛥𝑡
)

+ 1
2

√

(

𝐹 𝑛 +𝐾𝑠𝛥𝑡
)2 + 4𝐾𝑠𝛥𝑡 𝛥𝜃

(

ℎ𝑛0 + 𝛹
)

.
(10)

We note that, even though the infiltration rate is undefined for 𝐹 = 0,
the implicit Euler method yields a well-defined infiltration depth close
to zero, in contrast to the explicit Euler method. If the infiltration depth
increment 𝛥𝐹 , defined by 𝛥𝐹 𝑛 = 𝐹 𝑛+1 − 𝐹 𝑛, exceeds the available
urface water depth, it is restricted to ensure a nonnegative surface
ater depth. The effective infiltration rate is then given by

𝑛
𝑒 = 1

𝛥𝑡𝑛
min(𝛥𝐹 𝑛, ℎ𝑛), (11)

where 𝛥𝑡𝑛 is the CFL-limited timestep of the overland flow for timestep
. For the runoff model, it is enough to perform a simple integration
or both the effective precipitation and infiltration rate. We combine
he precipitation and infiltration increment into a single effective runoff
ncrement 𝛥𝑟𝑛𝑒 ,

𝛥𝑟𝑛𝑒 = 𝛥𝑡𝑛
(

𝑝𝑛𝑒 − 𝑓
𝑛
𝑒
)

. (12)

The overland flow and runoff models are tightly coupled, every step in
the surface flow simulation is synchronized with the computation and
application of the runoff update.
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2.5. GPU implementation of the runoff model

The spatial discretization of the surface flow with the FVM enables
straightforward parallelization on structured grids, as only neighboring
cells need to be considered when computing the next time step. The
GPU implementation of the runoff model uses the CUDA platform of
NVIDIA. In CUDA, parallel tasks are organized into thread blocks and
typically each parallel task (each so-called thread) is associated with
one cell. A block size of 16 by 16 cells ensures a high utilization
of the GPU (Horváth et al., 2016). The number and positions of the
neighboring cells required to compute the fluxes of a particular cell
are called the computation stencil. For the first-order CN scheme, only
the direct neighbors are accessed. For the second-order BH scheme, the
computation of the minmod-limited gradient requires a neighborhood
of two cells to be accessed in the four axis-aligned directions. Halo cells
are required to exchange the data between adjacent blocks. Effectively,
fluxes are computed only for the inner block of 14 by 14 cells for
the first-order CN scheme or for 12 by 12 cells for the second-order
BH scheme due to the different computational stencils and hence
the different number of halo cells required. The GPU implementation
handles data dependencies with on-chip memory for fast processing
of the computational stencil, e.g. shuffles introduced with the Kepler
microarchitecture. For implementation details, the reader is referred
to Horváth et al. (2016).

GPU implementations of the SWEs operate either on single-precision
or on double-precision floating-point variables. For single-precision
state variables the memory burden is lower and floating-point op-
erations are faster, as GPUs were originally optimized for single-
precision computations and therefore speed-ups of up to eight times
over double-precision are reported (Morales-Hernández et al., 2020).
To alleviate the computational burden in the proposed runoff model,
both the surface state and the infiltration state are stored in single-
precision floating-point variables. In previous publications (Buttinger-
Kreuzhuber et al., 2019; Horváth et al., 2020), we verified that the
employed surface flow model relying on single-precision state variables
captures lake-at-rest steady states, displays the expected convergence
order and is capable of handling wet/dry transitions. Still, truncation
errors might accumulate over time, which may have an effect on the
mass balance (Liang and Smith, 2015; Dazzi et al., 2021). Therefore, we
verify that the runoff model’s mass balance is within machine precision
in the presented test cases.

On a modern GPU with 24 GB of video memory the domain size in
our computational model is limited to around 175 million active (wet)
cells for the second-order BH scheme with dynamic runoff and single-
precision floating-point variables. For the first-order CN scheme, the
domain size is limited to around 225 million active cells as the first-
order time integration does not require the storage of an intermediate
state.

2.6. Sewer network model

In the Storm Water Management Model (SWMM), a sewer network
is represented by a set of nodes connected by links (Rossman, 2017).
Links transmit pipe discharges 𝑄 from one node to another. A so-called
node assembly consists of the node and all connected half-links, these
are the halves of the link that are connected to the node. At each
node assembly, the change in the hydraulic head is modeled by the
continuity equation. The pipe flow is governed by the transient 1D
SWE, i.e.

𝜕𝑡𝑄 = 2𝑈𝜕𝑡𝐴 + 𝑈2𝜕𝑥𝐴 − 𝑔𝐴𝜕𝑥𝐻 − 𝑔𝐴𝑆𝑓 , (13)

where 𝑈 is the pipe flow velocity, 𝐴 is the cross-sectional flow area, 𝐻
is the hydraulic head, and 𝑆𝑓 is the friction slope in the pipes. In the
SWMM, Eq. (13) is solved with a finite difference scheme. Thus, at each
link, momentum and continuity are conserved, in contrast to the nodes,
4

where only continuity is conserved. The continuous state variables g
in the time differences are approximated with their average values
over the conduit length. SWMM 5.1 uses an implicit backwards Euler
method for the time discretization, which is solved iteratively with
Picard’s method. We use the Preissmann slot model, implemented in
the latest version of SWMM 5.1.013, which is integrated in our coupled
model setup. Unfortunately, SWMM does not exactly preserve water
volumes. Continuity errors are typically within a few percent (Rossman,
2006) and may be reduced by artificially introducing a finer spatial
discretization (Pachaly et al., 2020). SWMM 5.1 is written in C/C++
and is easily incorporated into existing C++ software such as the
proposed modeling framework.

2.7. Bidirectional surface–sewer coupling

The surface–sewer discharge exchange term depends on the water
level at the surface 𝑤, the hydraulic head at the manhole 𝐻 and the bed
surface elevation 𝑏. In the following, 𝐴𝑚 and 𝐷𝑚 are the manhole’s area
nd diameter, respectively, 𝑑𝑖 is the distance between the surface and
he invert level of the pipes entering the node. The invert level refers to
he lowest elevation admitting water flow. Following Djordjević et al.
2005), Chen et al. (2016), Rubinato et al. (2017), Fernández-Pato and
arcía-Navarro (2018), we distinguish between four cases:

(1) inflow into a non-pressurized node,
(2) inflow into a pressurized node, where the surface flow depth is

small when compared to the node width,
(3) inflow into a pressurized node, where the surface flow depth is

large when compared to the node width,
(4) outflow onto the floodplain.

If the head in the pipe network is lower than the surface elevation,
.e. 𝐻 < 𝑑𝑖, the discharge exchange 𝑄𝑒 (m3/s) is given by the free weir

equation

𝑄𝑒 = −2
3
𝑐𝑑,𝑤𝜋𝐷𝑚(2𝑔)1∕2ℎ3∕2. (14)

f the head in the pipe network exceeds the surface elevation, i.e. 𝐻 >
𝑖, the discharge exchange is either given by the submerged weir
quation,

𝑒 = −𝑐𝑑,𝑠𝑤𝜋𝐷𝑚(2𝑔)1∕2ℎ(ℎ + 𝑑𝑖 −𝐻)1∕2, (15)

s long as ℎ < 𝐴𝑚∕𝜋𝐷𝑚. If ℎ ≥ 𝐴𝑚∕𝜋𝐷𝑚 the node is considered fully
ubmerged, the submerged orifice equation

𝑒 = −𝑐𝑑,𝑜𝐴𝑚(2𝑔)1∕2(ℎ + 𝑑𝑖 −𝐻)1∕2, (16)

s considered a more appropriate description. For example, for circular
anholes, the orifice equation is applied if ℎ > 𝐷𝑚∕4. The discharge

oefficients for the free weir, the submerged weir, and the orifice
quations are set to 𝑐𝑑,𝑤 = 0.56, 𝑐𝑑,𝑠𝑤 = 0.11, and 𝑐𝑑,𝑜 = 0.2,
espectively (Rubinato et al., 2017).

If the head in the pipe system exceeds the water level of the surface
low, an orifice equation is used (Djordjević et al., 2005). Assuming that
he surface velocity is negligible, the discharge exchange is given by

𝑒 = 𝑐𝑑,𝑜𝐴𝑚(2𝑔)1∕2(𝐻 − ℎ − 𝑑𝑖)1∕2. (17)

his equation also holds for dry surface cells, i.e. when ℎ = 0. With
hese four cases, all exchange flow conditions are properly handled. A
egative exchange discharge 𝑄𝑒 indicates flow into the sewer network
rom the surface, a positive value indicates sewer overflow.

Sewer overflow also occurs if water flow from the roofs of the
urrounding buildings exceeds the sewer inflow capacity. Consequently,
ater spills over at this node. In this case, the roof water is directly
dded to the sewer overflow as excess discharges and not reduced by
he surface–sewer exchange equations, Eqs. (14)–(17).

The surface–sewer coupling takes place only at the cells where
anholes and inlets are connected to the surface. To this end, the

eometry of the manholes and inlets is rasterized on the simulation
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Fig. 1. In a single time step of the coupled surface–sewer model, three major substeps (indicated in gray at the left) with associated routines are performed in each simulator.
he sewer and the surface simulator are executed in parallel, but they need to be synchronized for data exchange. These synchronization barriers (indicated with double red

ines) are needed for data exchange between the two simulators (indicated with the dashed red arrows). With this less tightly coupled approach, each simulator is able to advance
ndependently of the other.
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rid. Effectively, at each cell the perimeters and areas of all intersecting
anholes and inlets are collected. Furthermore, we also collect the

ontributions of each cell to each sewer node. We are able to include
ases where multiple manholes intersect the same cell, as well as cases
here multiple cells contribute to the same node. For each rasterized

ell, we keep track of the corresponding node head by averaging over
ll nodes connected to the specified cell. The sewer node exchange
ischarge Eqs. (14)–(17) are solved on a per-cell basis, where we
ccount for the relative contributions,

𝑒 =
∑

𝐴𝑗,𝑘𝑞𝑒𝑗,𝑘. (18)

The specific sewer exchange term for the surface model is limited by
the water availability in the case of sewer inflow, i.e.,

−𝑞𝑒𝑗,𝑘 = min
(ℎ𝑗,𝑘
𝛥𝑡

,−𝑞𝑒𝑗,𝑘

)

. (19)

In time, the sewer network model is interleaved with the surface
nd runoff model with an a priori defined coupling timestep 𝛥𝑇 𝐶 .
t multiples of the coupling timestep, information between the runoff
odel and the sewer model is exchanged. The coupling time step size

lso represents an upper limit to the time step sizes of the individual
imulators. If not stated otherwise, it is set to 1 s. As a rule of thumb, the
oupling time step size should be roughly of the same order as the time
tep sizes of the individual solvers. A time step of the coupled model is
llustrated in Fig. 1 and subdivided into the following steps:

(1) Exchange sewer–surface coupling data, i.e. provide node heads
and excess discharges to the surface flow simulation, and provide
exchange discharges 𝑄𝑒 to the sewer model.

(2) Advance the simulators in parallel from time 𝑇 𝑖 to 𝑇 𝑖 + 𝛥𝑇 𝐶 .
(3) Compute the exchanged discharges in this coupling time step in

the respective simulator.

ach simulator performs multiple routines at each of these steps (see
ig. 1). When coupling data need to be exchanged, the simulators are
5

equired to wait for the other simulator at synchronization barriers. In a
he proposed C++ framework, the synchronization barriers are imple-
ented with the functionality offered by std::thread and boost::barrier.

ynchronization barriers are set only at the beginning of a coupled
imulation time step, but not in the individual simulator’s advance
ethods. The loop for the time steps in the advance step is executed

ndependently of the other simulator. To advance from 𝑇 𝑖 to 𝑇 𝑖 +𝛥𝑇 𝐶 ,
ach simulator only needs the minimal amount of time steps required
or its own numerical stability.

For the sewer simulation, the exchange discharges are obtained
rom the surface simulation and applied to the sewer network. Ad-
itional inflows from external sources, e.g. roofs, are applied and
ompared with the sewer network’s inflow capacities. These excess
ischarges contribute to node overflow. SWMM routes the water flow
n the sewer network. Then, the sewer network state (node depths
nd heads, link discharges and volumes, inflow volumes, and excess
olumes) is updated. The excess volumes accumulated during one
oupling time step in the sewer network simulation are provided as
xcess discharges to the surface runoff simulation in the next coupling
ime step. More precisely, we compute the excess discharges prescribed
n the surface simulation at time step 𝑇𝑖+1 from the excess volumes
ccumulated in the sewer network simulation from 𝑇𝑖 to 𝑇𝑖+1 = 𝑇𝑖+𝛥𝑇 𝐶 .
s a consequence of the parallel execution, during the coupling time
tep the state of the surface variables remains fixed for the sewer
imulation and vice versa.

For the simulation of the surface flow and runoff, node heads
rom the sewer simulation are necessary for the computation of the
urface–sewer exchange discharges. Once acquired, the surface runoff
imulation advances independently of the sewer simulation. The rou-
ines in the surface runoff advance step correspond to typical routines
n FVMs for overland flow simulation. These routines are performed
n the GPU and looped until the next coupling time step 𝑇 𝑖 + 𝛥𝑇 𝐶
s reached. The surface state variables (water depth and level, surface
low discharges) and the infiltration state variables are updated after
imesteps 𝛥𝑡𝑛 according to Section 2.4. After the loop, the applied
xchange discharges during the coupling time step are computed and
re provided to the sewer simulation in the next coupling time step.
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The coupled simulation time steps are executed until the simulation
end time is reached. As the sewer simulation and the surface runoff
simulation are executed in parallel, the execution time of the coupled
surface–sewer model is determined by the execution time of the slower
simulator and not by the sum of the execution times as it would be the
case for a sequential coupled simulation. Usually, the one-dimensional
sewer network simulation is faster than the two-dimensional surface
flow simulation (Noh et al., 2018).

3. Results and discussion

We demonstrate the capabilities of the coupled model on labo-
ratory and real-world test cases. The scenarios include a small-scale
rainfall–runoff plot experiment, a rural catchment, and a full-scale
urban test case including sewer coupling. More specifically, we sim-
ulate the Thiès plot experiment (Section 3.1), the HOAL catchment at
Petzenkirchen, Austria (Section 3.3), and the city of Cologne, Germany
(Section 3.4). Furthermore, we validate the sewer–surface coupling
approach on a laboratory experiment presented in Rubinato et al.
(2017) in Section 3.2.

The numerical simulations were performed on a desktop PC
equipped with 10 Intel i9-9820X cores at 3.3 GHz and 128 GB RAM.
The GPU utilized for the test cases was an NVIDIA Titan RTX in
Tesla Compute Cluster (TCC) mode. It features 4608 CUDA cores and
has 24 GB memory. In the following, the term runtime describes the
cumulative execution time of the simulation measured via wall clock
timing. The runtime neither includes the initialization process, such as
reading input data, nor postprocessing steps, such as writing results to
the disk. However, the GPU runtime includes data transfer between the
GPU and the CPU during simulation.

3.1. Thiès plot experiment

We validate the model with measurements performed at in Thiès,
Senegal, by Tatard et al. (2008). The experiment was carried out on a
10× 4 m2 plot. The plot has an average slope of 1%, and the resolution
of the digital terrain model (DTM) is 0.1 m. Rainfall was simulated with
a constant rate of 70 mm∕h for a duration of 1 h on the sandy soil. In
the reference data set of Mügler et al. (2011), measurements of mean
flow velocities are available at 62 locations across the plot (Fig. 2a).
Following Simons et al. (2013), Manning’s roughness coefficient was
set to a constant value of 0.014 m1∕3∕s throughout the entire plot.
We compare the results from the first-order CN and second-order BH
scheme for the steady state after 1 h. The simulated water depths show a
slightly clearer depiction of the flow paths in the second-order scheme,
compare Fig. 2b–c. The simulated velocities are shown as arrows in
Fig. 2b–c for the CN and BH scheme.

In Fig. 3a, we compare the simulated velocities with the measured
velocities. Second-order schemes are computationally more involved
than first-order schemes, but are supposed to yield superior results due
to the improved accuracy. The root mean square error (RMSE) of the
velocities is defined by

RMSE =
√

1
𝑁

∑

𝑖
(𝑣𝑖𝑠 − 𝑣𝑖𝑜)2, (20)

where 𝑁 is the total number of all observed velocities 𝑣𝑖𝑜. The RMSEs of
the velocities are consistently lower for the second-order scheme for all
resolutions from 0.05 to 0.25 m, as is shown in Fig. 3b, and the achieved
RMSE of 0.026 m∕s is in line to results in the literature (Tatard et al.,
2008; Mügler et al., 2011; Simons et al., 2013; Caviedes-Voullième
et al., 2020). However, we emphasize that a proper discretization of the
source term is important for the simulation of runoff processes, even
more so in the case of first-order accurate schemes. The superiority
of the first-order CN scheme above the popular HR scheme (Audusse
et al., 2004) is noticeable from the velocity errors in Fig. 3a and b.
The simulated velocities of the HR scheme are consistently lower than
6

Fig. 2. Thiès experiment on a plot of 10×4 m2. (a) Terrain with velocity measurement
locations (white dots). (b) Simulated water depths after 1 h and velocities (colored
arrows) of the first-order accurate CN scheme and a resolution of 0.1 m. (c) Simulated
water depths after 1 h and velocities (colored arrows) of the second-order accurate BH
scheme and a resolution of 0.1 m. The flow patterns of the first-order and second-order
scheme are comparable for this fine resolution.

for the CN scheme, as the HR scheme is not able to fully account
for the bed slope in the case of shallow flow (Delestre et al., 2012).
Switching to second-order accuracy in the HR scheme fixes this issue,
albeit at the cost of a higher computational workload. The velocities
of the second-order HR scheme are only slightly deviating from the BH
scheme, therefore they were excluded from the plots in Fig. 3.

In line with numerical theory, the RMSE decreases with grid re-
finement in general as shown in Fig. 3b. However, the RMSEs of the
second-order scheme do not exhibit such a clear trend as the RMSEs of
the first-order scheme. For the second-order scheme, convergence with
regard to mesh refinement is limited for cell sizes below 0.1 m due to
the resolution of the underlying DTM (0.1 m). Typically, for smooth
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Fig. 3. Thiès. (a) Simulated velocities over measured velocities at steady-state condi-
tions for a resolution of 0.1 m. The second-order scheme develops higher velocities than
he first-order scheme. (b) Root mean square errors (RMSEs) over cell sizes. For the
irst-order scheme, the error decreases with resolution. For the second-order scheme
he trend is not as pronounced. (c) RMSEs over GPU runtimes. For the same amount
f computational time spent, the first-order CN scheme produces better results than the
H scheme.

olution surfaces, e.g. in river floods, the second-order accurate scheme
s expected to be more efficient when considering the accuracy versus
untime tradeoff (Horváth et al., 2020).

When the corresponding runtimes of the CN and the BH schemes
re compared in Fig. 3c, the first-order CN scheme produces better
esults for the same amount of computational time spent. In terms
f the tradeoff between computational workload and accuracy, this
uggests the use of finer grids together with first-order schemes for the
7

a

Fig. 4. Thiès. Maximum numerical speeds over time for the first-order accurate CN and
the second-order accurate BH scheme. No high numerical speeds develop over time.

Fig. 5. Thiès. Comparison of a single-precision GPU, a single-precision CPU, and a
double-precision CPU implementation of the CN scheme in terms of the velocity root
mean square errors (RMSEs) over cell sizes (a) and over the corresponding runtimes
(b). There are no significant differences in terms of accuracy.

surface flow in rainfall–runoff simulations. Summarizing, we conclude
that fast first-order schemes, which properly resolve the source term,
are sufficiently accurate for rainfall–runoff simulations.

Both the first-order CN and the second-order BH scheme are robust,
as no unphysical high numerical speeds develop over time (Fig. 4). The
time step 𝛥𝑡 is inversely proportional to the maximum numerical speed
𝜎 by the CFL condition, see (6). Thus, if the maximum numerical speeds
are small, large time steps are possible. There is a small spike at the
beginning of the wetting, but its magnitude is reasonable. In Fig. 5, we
compare the effect of using single-precision against double-precision
floating-point numbers for the first-order CN scheme on the CPU and
the GPU. In terms of the velocity RMSEs, the differences are noticeable
for a cell size of 20 cm, but they are still very small (<0.1 mm∕s). The

ass balance error for the 10 cm runoff model is below 0.0001%. The
ain volume is exactly 2.8 m3, 1.074432 m3 are infiltrated, 1.697895 m3

re flowing out at the open southern boundary during the simulation,
3
nd 0.027672 m remain at the surface at the end of the simulation. In
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Fig. 6. Geometric setup of the surface–sewer coupling test case.

Fig. 7. Surface to sewer coupling, i.e. water is flowing from the surface into the sewer.
Simulated (red) and observed water depths (violet) over exchange discharge for a range
of prescribed surface flow discharges.

terms of the runtimes, the parallel single-precision GPU implementation
is more than 30 times faster than the sequential single-precision CPU
implementation for a resolution of 5 cm (Fig. 5b). In this case, due to the
low number of cells in the domain, that is 16000 cells, the GPU cannot
fully exploit its parallel capabilities. The modest speedup in this small-
scale experiment is therefore not representative of large real-world test
cases.

3.2. Surface–sewer coupling

In this section, we present simulation results to verify the surface–
sewer coupling against experimental data provided by Rubinato et al.
(2017). The setup consists of a flume and a single manhole connected
to a pipe. The surface bed is 4 m wide and 8 m long with a slope
of 1 m per 1 km. At the upper end, a hydrograph with a constant
discharge of 11 L∕s is specified. At the outlet, critical flow conditions
are imposed. The manhole is located 2.5 m downstream of the inlet and
has a diameter of 0.24 m. The invert level of the pipe is 0.478 m below
the flume bed. Manning’s roughness coefficient is set to 0.009 s∕m1∕3

for both the pipe and the flume as both are PVC. In the experiment,
the pipe pressure and the surface level was measured 0.34 m and 0.35 m
away from the manhole (Fig. 6).

First, we tested steady state inflow from the surface into the sewer
system for various prescribed surface discharges ranging from 5 L∕s to
11 L∕s. The simulation reaches a steady state after 300 s. The simu-
lation is able to accurately reproduce the measured water depths and
exchange flows (Fig. 7). With a mean absolute error (MAE) of 0.19 mm
and relative differences ranging from 0.1% to 4.3%, the accuracy is
excellent.

In the second test case, we simulated overflow from the sewer onto
the wet flume. The surface inflow is fixed at 11 L∕s and the pipe inflow
ranges from 2.2 L∕s to 7.6 L∕s. Again, the simulated water depths agree
well with the measured water depths with a MAE of 0.72 mm. The
relative differences range from 3% to 4.8% in this case. Unfortunately,
SWMM cannot extract the pressure head at an arbitrary location along
the pipe, so instead we extracted the pressure head directly at the
manhole. The pressure head at the node is supposed to be lower than
8

Fig. 8. Sewer to surface coupling, i.e. water is flowing from the sewer onto the surface.
Simulated (red) and measured (violet) water depths (a) and pressure heads (b) over the
exchange discharges. The water depths show good agreement. The simulated pressure
head is extracted directly at the node and not 0.35 m away from the node as in the
experiment thus resulting in lower simulated pipe pressure heads.

in the pipe, as energy is dissipated in the transition from the pipe into
the manhole. This discrepancy is visible in Fig. 8b.

Overall, the coupled simulation correctly exchanges flows from the
surface to the sewer system and vice versa as simulated and observed
values agree. The small differences are comparable to results in the
literature (Rubinato et al., 2017; Fernández-Pato and García-Navarro,
2018).

3.3. HOAL Petzenkirchen

This scenario analyzes a rainfall event in June 2013 in the Hydrolog-
ical Open Air Laboratory (HOAL) catchment in Petzenkirchen, Lower
Austria. The HOAL catchment is used to test hydrological hypotheses
under natural conditions. The catchment is 0.66 km2 in size and is
mainly covered by arable land (87%) and grassland (10%) (Blöschl
et al., 2016). A high resolution (0.5 m) DTM of 2012 was used. The
topographic elevation of the catchment ranges from 255 to 325 m.a.s.l.
Manning’s roughness coefficient is set to 0.1 s∕m1∕3 for the riparian
forest, to 0.05 s∕m1∕3 for grassland and arable land, and to 0.03 s∕m1∕3

everywhere else.
The saturated conductivities range from 1 to 32 mm∕h and are set

according to literature values (Rawls et al., 1983; Carsel and Parrish,
1988; Smith et al., 2002) and measured values (Picciafuoco et al.,
2019). Streets and the river bed are assumed to be impermeable. We
specify an interception storage capacity of 5 mm for the riparian forests
around the outflow (colored in light green in Fig. 9a) and of 2 mm for
the arable land and grassland.

The investigated heavy rain event starts on June 23 at 21:00 and is
simulated for 1.5 days. There are two distinct blocks of intense rainfall.
The first occurs after 1 h, and the second after 28 h. The main flow
paths of the surface runoff for the second rain block are clearly visible
(Fig. 9a).
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Table 1
HOAL Petzenkirchen. Total runtimes of the sequential CPU implementation and the GPU implementation of the first-order CN
scheme at the end of the simulated 39 h. For this small-scale case, the GPU is exploiting its computational power only at the
highest resolutions, for lower resolutions it is not fully occupied and computational resources are left unused.

Resolution Number Runtime [h] Runtime per cell [ms] Speedup

𝛥𝑥 [m] of cells CPU GPU CPU GPU

1.0 748095 146.14 0.081 703.3 0.39 1813.3
2.0 187717 15.64 0.018 300.0 0.34 888.9
4.0 47276 2.18 0.008 166.1 0.61 272.8
8.0 11997 0.42 0.005 126.3 1.62 78.0
Fig. 9. HOAL Petzenkirchen. (a) Simulated water depths at the peak of the second
rain block after 27.8 h.

For the 1 m simulation, 0.75 million cells are wet at the peak
of the second rain block, which corresponds to the simulated region
of 0.75 km2 (including a small buffer zone around the catchment).
Regarding the runtimes of the sequential CPU and the parallel GPU
implementation, speedups of three orders of magnitude are achieved
( Table 1). The speedup increases with higher resolutions and higher
workloads as the GPU is not fully utilized for a low resolution. For
a fully occupied GPU, doubling the resolution causes a theoretical
increase of the amount of work by eight times as the number of cells
quadruples and due to the CFL condition twice the number of time
steps are required. For the 1 m simulation, 90% of the computation
time on the GPU is spent in the following routines: the reconstruction
and flux computation (32%), the time integration and time step reduc-
tion (30%), and the computation and integration of the runoff (28%).
In the latter routines, it is not the amount of floating-point operations
but the memory transfers that prevent the GPU from achieving faster
runtimes. On the CPU, the distribution is slightly different with 60%,
11%, and 9%, respectively, due to faster memory access rates.

One drawback of the GPU implementation is the comparably longer
development time. Parallel CPU implementations are possible (Neal
et al., 2010; Noh et al., 2018; Morales-Hernández et al., 2021), but
even if the implementation achieves full parallelization speedups, over
thousand CPU cores would be needed to match the computational
advantage of the GPU. From an economical and ecological perspective
the GPU simulation still performs better with regards to power con-
sumption than a parallel CPU simulation running on a supercomputer.
The fast GPU simulation opens up new possibilities for this small
catchment, such as calibration tasks within reasonable time spans.

3.4. Urban flooding in Cologne

We study two urban scenarios in the city of Cologne, Germany.
First, we present a dual-drainage model at the central part of the city,
at the eastern bank of the Rhine river, to which we refer as Cologne
Center-East. Second, we present a city-scale simulation encompassing
the entire city of Cologne with an area of 23.73 × 27.14 km2 without
sewer coupling.
9

In the first scenario, the region simulated with the coupled model
lies at the eastern bank of the Rhine river and covers an area of
5.41 × 9.86 km2. The terrain model is obtained from light detection
and ranging (LIDAR) data where solid urban features such as buildings
or bridges were removed in a pre-processing step, so that the DTM
represents a so-called bare earth DTM. The resolution of the DTM
is 1 m with a typical vertical accuracy around a decimeter (Kraus,
2011; Dottori et al., 2013). The terrain is relatively flat, mostly ranging
between 40 and 60 m.a.s.l. (Fig. 10a). The simulation domain exhibits
modest average slopes of 0.3 m∕km along the Rhine river from south to
north, and of around 1 m∕km from east to west.

Buildings and land use data are extracted from the official ALKIS
data set of 2021 (Caffier et al., 2017). Buildings cover 13% of the
area, they are impermeable for the surface flow and water from roofs is
routed to sewer nodes in the coupled model, thus building cells remain
dry during simulation. Roughness coefficients are mapped from the
land use, a detailed overview of the spatial distribution is shown in
Fig. 10b. The interception parameters are assumed to correlate with
land use. Woods and gardens are assigned a storage capacity of 5 mm,
for public recreational areas and residential areas it is set to 2 mm.
Rivers, streets and parking lots are assumed to not retain rain, thus their
storage capacity is set to zero. The infiltration parameters are derived
from a soil map, compare the saturated hydraulic conductivity in
Fig. 10c. Streets and squares as well as rivers and lakes are considered
impermeable.

We preprocessed sewer data for SWMM for the eastern bank of the
Rhine river, therefore, cells west of the river are excluded from the
simulation. The active simulation region is thus restricted to 39 km2.
The sewer network consists of 6392 junction nodes and 7206 conduits
linking them with a total length of 245 km. Moreover there are 16
pumps, 16 outfalls and 18 weirs in the simulation domain, which
are included in the model. The sewer network and the invalidated
region are shown in Fig. 11a in yellow and pink, respectively. Exchange
between the sewer network and the surface is assumed to occur at the
nodes with the parameters specified in Section 2.7. Each node has a
maximum inflow capacity of 0.1 m3∕s. Rain that falls on buildings is
directly routed to an assigned sewer junction node, if the roof water
discharge exceeds the capacity, it spills over at the nodes. We simulate
a hypothetical uniform one-hour rainfall of 53 mm∕h corresponding
to approximately a 100-year event according to the KOSTRA 2010R
data set (Junghänel et al., 2017). With a cell size of 1 × 1 m2, the
grid has nearly 40 million cells valid for simulation. The water depths
are aggregated in time during the first-order 1 m simulation resulting
in a maximum water depth for each cell at the end of the simulation
(Fig. 11b).

To illustrate the effects of the sewers, the resolution, and the or-
der of accuracy of the surface flow scheme, we focus on the region
marked with a red frame in Fig. 11b. The water depths of the coupled
simulation for the specified region are aggregated in time resulting
in maximum water depths (Fig. 12a). This heightfield serves as the
reference for the difference heightfields, where positive values indicate
higher maximum water depths in the reference simulation than in
the corresponding alternative simulations. The differences between the
simulation with sewer coupling and the one without are spatially
restricted to the vicinity of the sewer network (Fig. 12b). For the
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Fig. 10. Cologne Center-East coupled simulation. (a) The map of the terrain elevations shows only modest slopes across the simulation domain. The simulated region is heavily
urbanized as indicated by the large amount of buildings, displayed in gray. (b) Manning’s roughness coefficients (s/m1∕3) are derived from land use. (c) The spatial distribution
of the saturated hydraulic conductivity is based on soil types. Streets and the river bed are set as impermeable zones.

Fig. 11. Cologne Center-East coupled simulation. (a) The sewer network (yellow) and regions invalid for simulation (pink). (b) Maximum water depths of the 1 m simulation at
the final simulation time 𝑇 = 2 h. Fig. 12 focuses on the region marked with the red frame.
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Fig. 12. Cologne Center-East detail. (a) Maximum water depths occurring during the
coupled simulation with the first-order scheme and a resolution of 1 m. Difference
heightfield of the maximum water depths between (b) the 1 m simulations with and
without sewers, (c) the 1 m and the 4 m simulations, and (d) the first-order CN and the
second-order BH accurate scheme. Regions with positive values (red) indicate higher
maximum water depths in the coupled first-order simulation at 1 m shown in (a) than
in the corresponding alternative simulations (b–d).

simulation without sewer coupling, we assume that water falling onto
roofs can be drained by the sewer network. In regions with positive
values (red), the maximum water depths of the coupled simulation
11
Table 2
Cologne Center-East coupled simulation. Water balance errors over a range of different
coupling time step sizes 𝛥𝑇𝐶 and maximum water depth differences between the tightly
coupled simulation and the proposed coupled model.
𝛥𝑇𝐶 [s] Continuity errors [m3] MAE [mm] MSE [mm]

Coupled SWMM Runoff

0.5 858.6 69.8 15.1 0.10 0.04
1.0 7920.2 8588.2 15.0 0.38 0.32
2.0 19305.4 20464.9 14.9 0.98 0.89
4.0 20168.7 22034.5 14.9 1.35 1.22
8.0 24777.0 26448.8 14.8 1.46 1.35

(Fig. 12a) are higher than the maximum water depths of the simulation
without sewer coupling. In terms of the MAE, the differences amount to
7.37 mm. The mean signed error (MSE), where the results of the runoff
simulation without sewers are subtracted from those of the coupled
simulation, amounts to −6.60 mm. This indicates that surface water
levels do not rise as high in the coupled simulation due to sewer
drainage. In fact, more water is drained from the streets than what is
spilling onto the streets as excess roof water, which exceeds node inflow
capacities. The sewer simulation also induces a water redistribution and
causes minor floodings at a few streets due to sewer overflows. Overall,
the sewer simulation drains around 250000 m3 of surface water.

In Fig. 12c, the difference field resulting from the subtraction of
the maximum water depths computed by a 4 m simulation from the
1 m simulation is displayed. In regions with negative values (blue), the
maximum water depths of the 4 m simulation are higher than the corre-
sponding maximum water depths of the 1 m simulation. The difference
between the maximum water depths of the 4 m and the 1 m grids are
spatially concentrated at certain locations and appear mostly where the
DTM shows strong variations at the scale of the employed cell size.
For example, major differences occur in the vicinity of underpasses and
garage entrances, or at the edge of elevated plateaus. At the edges of
buildings, differences appear as boundary cells are rasterized as wall
cells in one grid but not in the other. Overall, the MAE between the
4 m and the 1 m simulations is 8.12 mm. For the MAE computation the
results of the 1 m grid are downsampled onto the 4 m grid.

In Fig. 12d, we compare the first-order accurate CN and the second-
order accurate BH scheme. In general, the differences in the maximum
water depths between the two surface flow discretizations are marginal.
Noticeable deviations are concentrated on a few spots and occur where
relatively high velocities up to 1 m∕s develop. This happens for exam-
ple at sloped entrances to inner courtyards. In the entire simulation
domain, the MAE between the two schemes is 1.2 mm and the MSE
amounts to −0.1 mm. As we consider differences between the maximum
water depths occurring during the event, a non-nil MSE does not indi-
cate a volume error but rather indicates that the surface water travels
a greater distance. In fact, the negative MSE reveals that maximum
water depths are slightly higher in the second-order BH scheme. In this
comparison, the errors are considerably smaller than in the previous
comparisons. The relatively small differences have to be considered in
light of the mild terrain slopes.

To verify the validity of the proposed parallelized coupling ap-
proach, we perform a comparison of the proposed coupling method
with a tightly coupled simulation as in Leandro and Martins (2016).
In the tightly coupled simulation, the individual solvers execute one
time step after each other, so that each solvers advances exactly one
time step with a fixed time step size of 0.1 s. The continuity errors
in the tightly coupled simulation amount to 1047.9 m3 due to flow
routing errors (942.3 m3) in SWMM. The overall error can be con-
sidered acceptable when compared to the total sewer inflow volume
(426802.8 m3). Furthermore, we compare the maximum water depths
for a cell size of 4 m. Across the entire simulation domain the MSE is
0.32 mm and the MAE is 0.38 mm. Differences between the maximum
water depths of the proposed model and the tightly coupled model are
predominantly located around overflowing sewer nodes, see Fig. 13b,
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Fig. 13. Cologne Center-East detail. (a) Maximum water depths occurring during the
tightly coupled simulation with the first-order scheme and a resolution of 4 m. (b)
Difference heightfield of the maximum water depths of the tightly coupled simulation
and the proposed model with a parallel coupling time step of 1 s. Regions with negative
values (blue) indicate lower maximum water depths in the tightly coupled simulation.

Table 3
Cologne Center-East coupled simulation. Runtimes of the sequential SWMM CPU solver
and the GPU runoff simulation for the simulated timespan of 2 h over different
resolutions 𝛥𝑥. For resolutions above 2 m, the sewer simulation on the CPU dominates
the runtime of the coupled model.

Resolution Number Runtime [h] Runoff/sewers

𝛥𝑥 [m] of cells Runoff (GPU) Sewers (CPU) runtime ratio

1.0 39023122 0.3555 0.2670 1.331
2.0 9755780 0.0545 0.2441 0.223
4.0 2438945 0.0110 0.2408 0.046

which shows the region marked with a red frame in Fig. 11b. Still, the
MAE between the two coupling approaches is small. It is lower than the
MAE between first- and second-order scheme, and considerably lower
than the difference between the simulations on the 1 m and the 4 m
grid.

We investigate the effect of the coupling time step size 𝛥𝑇𝐶 on the
accuracy of the simulation results by considering continuity errors in
the water volumes as well as differences in the maximum water depths
with respect to the tightly coupled simulation, see Table 2. The overall
inlet volume amounts to 1935514.8 m3. The water volume on the surface
and in the sewers ranges from 698052.3 m3 to 762353.6 m3 and the outlet
volumes from 1238814.4 m3 to 1243885.8 m3 for the different coupling
time step sizes. The mass balance errors are dominated by the flow
routing error of SWMM ( Table 2). Overall, the total mass balance errors
is below 1 per mille for coupling time step sizes under 2 s, and around
1 per mille for 4 s and 8 s. The runoff simulation’s time step 𝛥𝑡 varies
between 0.18 s and 0.32 s for the 4 m grid. During the coupling time
step (1 s) around 4 steps of the surface runoff simulation and around
10 sewer routing steps are performed in average. A coupling time step
size of 1 s seems to offer a good compromise between computational
performance and accuracy.
12
Fig. 14. Cologne runoff simulation. (a) Buildings (gray), land use and invalid cells
(pink) for the simulated region covering the entire city. (b) Maximum water depth of
the 1.5 m runoff simulation without sewer coupling after 2 h, i.e. at the end of the
simulation.

To thoroughly assess the quality of the predictive capabilities of
the coupled model, further validation is required. The validation of
coupled models on large-scale scenarios is challenging as in most
cases the collected data is sparse. Possible strategies to tackle this
problem are the collection of crowd-sourced data (Yu et al., 2016; Wang
et al., 2018; Xing et al., 2018), imagery from unmanned aerial vehicle
sensing (Perks et al., 2016) or insurance claims (Zischg et al., 2018).
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A comparison of runtimes of the coupled simulator for resolutions
of 1 m, 2 m, and 4 m, in Table 3 shows that the GPU-accelerated
2D surface flow simulation is faster than the sequential 1D CPU sewer
simulation for low resolutions. This emphasizes once more the massive
gain in computing power for the surface flow simulation due to the GPU
acceleration. Usually, solving the continuity and momentum equations
for the sewer flow only requires around 0.1% of the total coupled
simulation runtime for a sequential implementation (Noh et al., 2018).
In the proposed implementation, as the simulations advance in parallel,
the runtime per coupling time step is determined by the slower coupling
component, which is either the GPU runoff simulation or the CPU sewer
simulation. Thus, in order to improve the model performance further,
effective parallelization strategies (Burger et al., 2014) of the sewer
module are necessary.

For the derivation of pluvial flood hazard maps, we perform bench-
mark tests regarding large simulation domains with a size of 23.73 ×
27.14 km2 spanning the entire city of Cologne. We simulate uniform
rainfall of 53 mm∕h that lasts for 1 h. In order to account for surface flow
routing after the rainfall ends, the total simulated duration is extended
to 2 h. In this city-scale scenario shown in Fig. 14a, infiltration and
interception are considered and are set up analogously to the previously
studied smaller domain. The 1.5 m simulation grid has a total number
of 220 million cells valid for simulation, of which 17 million cells are
rasterized buildings. In this scenario, we do not explicitly simulate the
sewer network of the entire city, but we assume that water falling
onto roofs can be drained by the sewer network, therefore building
cells are excluded from simulation. All other input parameters remain
unchanged. In Fig. 14b, we display the maximum water depths that
occur during the simulated event. The computational speed is faster
than physical time, with a total runtime of 1.62 h for a total simulated
duration of 2 h. The simulation uses up to 23.4 GB of memory on the
NVIDIA Titan RTX GPU, close to its limit of 24 GB.

In previous studies, urban regions of 40 km2 were modeled with
n efficient hybrid parallelization strategy on an adaptive grid with a
inimum cell size of 1 m (Noh et al., 2018). Their model uses runoff

oefficients depending on land use instead of a dynamic infiltration
odel as in this work, but dynamic sewer coupling is also integrated.

n Xing et al. (2018), the city of Fuzhou, China, is modeled with a
esolution of 2 m and a constant drainage loss at streets neglecting
idirectional sewer interaction and water routing in sewers. The simu-
ation involves 66 million cells and runs almost in realtime on a rack
f 8 NVIDIA Tesla K80 GPUs. The proposed computational model is
fficient in terms of memory consumption and performance, it is able
o simulate over 200 million cells on a single Titan RTX GPU with 24 GB
emory, processing almost 10 million cells per GB of GPU memory. It is
seful to extend the capabilities of single-GPU implementations to large
egions as they typically run faster than comparable multi-GPU im-
lementations requiring inter-GPU communication, which introduces
n additional bottleneck (Morales-Hernández et al., 2021). In order
o support larger simulation regions and higher spatial resolutions, an
ndispensable extension to multiple GPUs is possible.

. Conclusions and perspectives

In this study, we present an integrated modeling framework for the
imulation of rainfall–runoff processes and urban flash floods. The in-
roduced modeling framework accounts for all major processes needed
or an accurate description of flash floods while still accomplishing very
ast runtimes. Infiltration is modeled with the Green–Ampt equations in
fully dynamic and spatially distributed way. An interception module

ccounts for initial rain abstractions due to vegetation. Instead of
pplying simple surface flow approximations, we discretize the full
D shallow water equations (SWEs). In the context of rainfall–runoff
imulations, the first-order accurate CN scheme (Chen and Noelle,
017) was shown to be able to reproduce velocities and discharges
ccurately. In particular, using higher resolutions in the first-order
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scheme proved to be more beneficial than using the second-order accu-
rate BH scheme (Buttinger-Kreuzhuber et al., 2019) when considering
the tradeoff between accuracy and required computational work. We
remark that an appropriate bed source term discretization of the surface
flow is essential for providing correct velocity estimates.

For urban flash floods, the rainfall–runoff simulation is coupled
with the sewer network simulation from the Storm Water Management
Model (SWMM). An effective approach for the bidirectional coupling
of the sewer simulation to the surface runoff simulation is developed,
where the two simulators advance in parallel in each coupling timestep.
The runoff simulation is validated in the Thiès irrigation experiment
and the surface–sewer coupling is validated in a laboratory experiment,
both showing good agreement between simulations and observations.
Regarding the validation of the integrated model, we point out that
more detailed spatial observations are needed in order to assess the
model’s predictive performance in a more exhaustive way.

We demonstrate the benefits of using graphics processing units
(GPUs) as computational devices to speed up the rainfall–runoff simula-
tions. The GPU-accelerated model enables high-resolution simulations
for entire cities with simulation domains involving up to 225 million
cells on a single GPU with 24 GB of memory. In other words, we enable
simulation of regions up to 220 km2 with a resolution of 1 m in realtime.
This removes the need for multiple localized, small-scale simulations.
Speed-ups of up to three orders of magnitude are achieved for simulated
regions with around 10 million cells, if compared against a serial CPU
implementation. The speedup increases with the number of cells, thus
large simulation regions profit even more from GPU acceleration.

The efficiency of the approach opens up new possibilities regard-
ing ensemble simulations and high-resolution environmental modeling.
The coupling of the surface flow with the spatially distributed infiltra-
tion and interception component allows the direct inclusion of green
infrastructure by varying parameters accordingly. Detailed results help
raise public awareness for flash floods by providing straightforward
impact analysis at the scale of individual buildings and enable the
analysis of efforts to mitigate the effects of climate change in rural and
urban settings.

Software availability

The presented modeling framework Visdom (Waser et al., 2011) is
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with Visdom is available on request from VRVis (www.vrvis.at).
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