
Software Rasterization of 2 Billion Points in Real Time
MARKUS SCHÜTZ, BERNHARD KERBL, and MICHAEL WIMMER, TU Wien, Austria

Fig. 1. A point cloud grouped into batches. Individual batches (inset) are rendered by a GPU workgroup using
128 threads, and each thread renders 80 points for a total of 128 × 80 = 10 240 points per batch. Workgroups
utilize batch bounding boxes for frustum culling and to determine the suitable coordinate precision: 10-bit
fixed-precision integer coordinates (relative to the batch bounding box) provides sufficient precision for the
majority of visible batches. Additional bits—enabling up to 30-bit coordinates—are loaded on demand.

The accelerated collection of detailed real-world 3D data in the form of ever-larger point clouds is sparking a
demand for novel visualization techniques that are capable of rendering billions of point primitives in real-time.
We propose a software rasterization pipeline for point clouds that is capable of rendering up to two billion
points in real-time (60 FPS) on commodity hardware. Improvements over the state of the art are achieved
by batching points, enabling a number of batch-level optimizations before rasterizing them within the same
rendering pass. These optimizations include frustum culling, level-of-detail (LOD) rendering, and choosing the
appropriate coordinate precision for a given batch of points directly within a compute workgroup. Adaptive
coordinate precision, in conjunction with visibility buffers, reduces the required data for the majority of
points to just four bytes, making our approach several times faster than the bandwidth-limited state of the art.
Furthermore, support for LOD rendering makes our software rasterization approach suitable for rendering
arbitrarily large point clouds, and to meet the elevated performance demands of virtual reality applications.

CCS Concepts: • Computing methodologies→ Rasterization.

Additional Key Words and Phrases: point cloud rendering, rasterization, real-time rendering, virtual reality

ACM Reference Format:
Markus Schütz, Bernhard Kerbl, and Michael Wimmer. 2022. Software Rasterization of 2 Billion Points in Real
Time. Proc. ACM Comput. Graph. Interact. Tech. 5, 3 (July 2022), 16 pages. https://doi.org/10.1145/3543863

Authors’ address: Markus Schütz, mschuetz@cg.tuwien.ac.at; Bernhard Kerbl, kerbl@cg.tuwien.ac.at; Michael Wimmer,
wimmer@cg.tuwien.ac.at, TU Wien, Austria.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2022 Copyright held by the owner/author(s).
2577-6193/2022/7-ART
https://doi.org/10.1145/3543863

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article . Publication date: July 2022.

https://doi.org/10.1145/3543863
https://doi.org/10.1145/3543863


2 Schütz et al.

1 INTRODUCTION
Modern hardware and software solutions are driving the collection of real-world geometry data—
so-called digital twins—at a staggering pace: ubiquitous mobile cameras, RGB-D sensors and laser
scanners can capture 3D point clouds of individual objects, or even entire buildings, within minutes.
However, the resulting raw data sets—which may contain billions of points—quickly prove too
demanding for viewing them at an interactive rate, even given the performance of modern-day
graphics processing units (GPUs), with their streamlined hardware rasterization pipeline. Especially
for virtual reality (VR) settings, the raised demands for visualization (stereoscopic rendering, high
resolution and refresh rate) quickly becomes a limiting factor. Thus, costly preprocessing routines
must be applied to the captured data sets prior to point cloud visualization, thereby inhibiting the
user’s abilities to preview, curate and edit captured data sets. In this paper, we introduce significant
improvements to the software rasterization of points, allowing applications to draw large amounts
of points in real time without the need for preprocessing routines.

With the introduction of hardware with dedicated triangle rasterization units, hand-crafting ras-
terization routines in software became largely obsolete. Custom-built rasterizers have nevertheless
remained an ongoing topic of research and some eventually managed to beat hardware rasteriza-
tion in specific scenarios [Liu et al. 2010]. But in general, dedicated hardware remains the fastest
approach. Unreal Engine’s Nanite is the first approach that promises far-reaching improvements
for 3D games via hybrid software and hardware rasterization [Karis et al. 2021]. They found that
rasterizing the fragments of pixel-sized triangles with atomic min-max operations is faster than
pushing them through the hardware pipeline.
Compared to triangle meshes, point cloud models offer additional opportunities for efficient

software rasterization, as the hardware rendering pipeline is largely dedicated to the rasterization
of triangles rather than points. Point clouds are usually static and lack connectivity, therefore
animation data, index buffers or vertex duplication are not required. The lack of a connected surface
also makes UV maps and textures irrelevant, which is why colors are typically directly stored
on a per-vertex basis. Point clouds acquired by laser scanners do not contain surface normals.
However, using point primitives to represent geometric details of all frequencies necessitates
ubiquitously high sampling density to obtain high-quality results. Rendering point clouds thus
demands processing of vast, simplistic data sets with straightforward shading and a low number
of touched fragments per point. By optimizing for these properties, we arrive at a tailor-made,
high-performance solution for point cloud rendering. Our approach builds on [Schütz et al. 2021]
to further optimize several aspects of software rasterization of points, leading to a significant
increase in brute-force rendering performance. With these improvements, we aim to benefit fields
that regularly work with data sets comprising billions of points, e.g., surveying, archaeology and
architecture: they pave the way for instantly visualizing and interacting with captured data sets,
ideally on-site. Our contributions to the state of the art of software rasterization of point clouds are:

• Assigning larger workloads to workgroups to enable efficient batch-level optimizations.
• Adaptive coordinate precision, coupled with visibility-buffering for 3× faster performance.
• Fine-grained frustum culling on batches of about 10 240 points, directly on the GPU.
• Support for state-of-the-art level-of-detail structures for point clouds.

In this paper, we will consider point clouds as 3D models made of colored vertices, where each
vertex is projected to exactly one pixel. Although this is a fairly strict limitation, it allows us to
devise algorithms that compete with graphics APIs that also only support one-pixel points, such
as DirectX (POINTLIST primitive) and all backends that use it (WebGL, WebGPU, ANGLE, MS
Windows games and applications, ...). We intend to use the evaluated performances of one-pixel
points as a baseline for comparisons and leave support for larger point-sprites to future work.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article . Publication date: July 2022.



Software Rasterization of 2 Billion Points in Real Time 3

2 RELATEDWORK
2.1 Software Rasterization of Triangle Meshes
Early CPU-side solutions for triangle rasterization in software were largely made obsolete in the
2000s by GPUs and their high-performance rasterization components. The continuously advancing
programmability of GPUs has given software rasterization its second wind: Freepipe demonstrated
that for scenes containing many, small triangles, GPU software rasterization with one thread per
triangle can outperform the hardware pipeline [Liu et al. 2010]. CudaRaster and Piko expanded on
this idea, introducing optimizations for hierarchical triangle rasterization, achieving competitive
performance with hardware rasterization even for larger triangles [Laine and Karras 2011; Patney
et al. 2015]. Complete software implementations of OpenGL-style streaming pipelines, including
sort-middle binning and hierarchical rasterization, have been presented for NVIDIA CUDA and
OpenCL [Kenzel et al. 2018; Kim and Baek 2021]. A comprehensive analysis of previous software
rasterization approaches and the challenges they tackle is found in [Frolov et al. 2020]. Most recently,
software rasterization has received increased attention due to the launch of the Unreal Engine 5
and its virtual geometry feature, Nanite [Karis et al. 2021]. Nanite provides both a hardware and a
software pipeline for rasterization geometry and selects the proper route for rendered geometry
dynamically. In scenes with mostly pixel-sized triangles, their software pipeline reportedly achieves
more than 3× speedup. Its striking success begs the question whether high-performance software
rasterization has not been overlooked as a viable method for other 3D representations as well.

2.2 Software Raserization of Point Clouds
Günther et al. proposed a GPU-based approach that renders points up to an order of magnitude
faster than native OpenGL point primitives [Günther et al. 2013]. When a point modifies a pixel,
their busy-loop approach locks that pixel and updates depth and color buffers. Marrs et al. have
used atomic min/max to reproject a depth buffer to different views [Marrs et al. 2018]. Since only
depth values are needed, 32-bit atomic operations are sufficient. Schütz et al. render colored point
clouds by encoding depth and color values of points into 64 bits, using 64-bit atomic min operations
to find points with the lowest projected depth value for each pixel in an interleaved depth and
color buffer [Schütz et al. 2021]. Our paper is based on their approach, making it several times
faster while also adding support for frustum culling and LOD rendering. Recently, Rückert et al.
have presented their approach for a differentiable novel-view synthesis renderer based on the same
prior work, using their fast software rendering of one-pixel points to draw multiple resolutions of a
point cloud, followed up by neural networks to fill holes and refine the results [Rückert et al. 2022].

2.3 Level-of-Detail for Point Clouds
Rusinkiewicz and Levoy introduced QSplat, a point-based level-of-detail data structure, as a means
to interactively render large meshes [Rusinkiewicz and Levoy 2000]. They use a bounding-sphere
hierarchy that is traversed until a sphere with a sufficiently small radius is encountered, which is
then drawn on screen. Sequential Point Trees [Dachsbacher et al. 2003] are a more GPU-friendly
approach that sequentializes a hierachical point-based representation of the model into a non-
hierarchical list of points, sorted by their LOD: from a distance, only a small continuous subset
representing a lower LOD needs to be rendered, without the need for costly traversal through a
dense hierarchical structure. Layered point clouds [Gobbetti and Marton 2004] were one of the most
impactful improvements to LOD rendering and are used to this day. The LPC constitutes a binary
tree that splits the 3D space in half at each level of the hierachy. The key difference to the bounding-
sphere hierarchy of QSPLATs is that each node itself is not a sphere, but a smaller point cloud
comprising thousands of randomly selected points. The large amount of geometry in each node

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article . Publication date: July 2022.



4 Schütz et al.

(a) Processing flowchart for a single point cloud rendering workgroup.

Fig. 2. Each workgroup renders one point cloud batch. If its projected bounding box is small, fewer coordinate
bits are loaded per point, reducing memory bandwidth usage and boosting render performance accordingly.

reduces the number of nodes required to store the full data set, leveraging the GPU's ec�ciency at
rendering hundreds of batched primitives. Later work improved upon several aspects of layered
point clouds, e.g., the tree-structure, LOD generation times, and density-based subsampling to
properly support data sets with non-uniform density [Bormann and Krämer 2020; Elseberg et al.
2013; Goswami et al. 2010; Kang et al. 2019; Martinez-Rubi et al. 2015; Scheiblauer and Wimmer 2011;
Wand et al. 2008]. Section 3.5 describes the support for layered point clouds with our approach.
More specialized approaches have been proposed to extract several suitable LODs at once for
multiple views using point-based rendering, as done, e.g., by Hollander et al. [2011].

2.4 Coordinate �antization

Quantization describes the conversion of a continuous signal to discrete samples. The uniform
precision and control over the supported range, precision, and number of bits makes quantization a
common method of coordinate compression schemes [Schuster et al. 2021], complemented by delta
and entropy encoding [Deering 1995; Isenburg 2013] or hierarchical encoding [Botsch et al. 2002].
In this paper, we use quantization to encode �oating point input coordinates as �xed-precision
representations, such that their bits can be loaded adaptively (loading fewer bits if lower precision
is su�cient, and fetching additional bits to re�ne the previously loaded low-precision coordinates
on-demand).

3 METHOD

The core aspect of our rasterization method is the consideration and assignment of points as batches,
with each workgroup rendering a single batch over several iterations. Utilizing larger batches (e.g.,
10k points for work groups of 128 threads�80 points per thread) enables several optimizations
that would otherwise be too ine�cient to amortize corresponding additional checks. In addition,
allowing for batches with varying amounts of points enables natural support for several widely
used LOD structures, as discussed in Section 3.5. Fig. 2 provides an overview of the main steps for
our approach, performed within each workgroup. In the following, we will �rst describe our basic
rendering pipeline, which we will then gradually expand by additional features and optimizations
that ultimately enable us to render point clouds several times faster than the state of the art.

3.1 Data Structure

We �rst build and maintain a list of batches and a list of points. A batch references a number of
consecutive points in the point list (see Fig. 3). Each batch stores the o�set and number of points it
contains, and their bounding box. Each entry in the point list holds four attributes: low, medium,
and high precision parts of the coordinates, and color. Attributes are stored in a struct-of-arrays
fashion so that we may only load components from memory we actually need during rendering.

For regular, unstructured point cloud data sets, we suggest to simply group about 10k consecutive
points into batches and compute their bounding box while loading the points. To bene�t from

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article . Publication date: July 2022.




	Abstract
	1 Introduction
	2 Related Work
	2.1 Software Rasterization of Triangle Meshes
	2.2 Software Raserization of Point Clouds
	2.3 Level-of-Detail for Point Clouds
	2.4 Coordinate Quantization

	3 Method
	3.1 Data Structure
	3.2 Basic Rendering Pipeline
	3.3 Adaptive Vertex Precision
	3.4 Optimizing Access Patterns
	3.5 Adding Support for Level-of-Detail Rendering
	3.6 Virtual Reality Rendering

	4 Evaluation
	4.1 Rasterization Performance
	4.2 The Impact of Vertex Ordering
	4.3 Virtual Reality Performance
	4.4 Adaptive Precision

	5 Discussion and Conclusion
	Acknowledgments
	References

