
Interactive Web-Based Flood Map
Visualization

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Christoph Michael Essler
Matrikelnummer 01328166

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Mitwirkung: Dipl.-Ing. Dr.techn. Jürgen Waser

Wien, 8. Dezember 2022
Christoph Michael Essler Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Interactive Web-Based Flood Map
Visualization

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Christoph Michael Essler
Registration Number 01328166

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Assistance: Dipl.-Ing. Dr.techn. Jürgen Waser

Vienna, 8th December, 2022
Christoph Michael Essler Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Christoph Michael Essler

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 8. Dezember 2022
Christoph Michael Essler

v

Danksagung

Ich bin höchst dankbar, für all die Unterstützung die ich in der gesamten Zeit bekommen
habe, während ich diese Bachelorarbeit schrieb. Ich danke VRVis, und zwar insbesonders
den Teamkolleg*innen beim Visdom Projekt, für die einzigartige Gelegenheit, in einem
so nützlichen, aufregenden, und großen Projekt wie diesem arbeiten zu können, und für
ihre verlässliche und hilfreiche Unterstützung sowie Aufsicht. Ich danke auch meiner
Familie und meinen Freund*innen für die Unterstützung die sie alle auf ihre eigene
Weise zur Verfügung gestellt haben. Ohne den Spaß und die Ratschläge, die wir in
unserer langanhaltenden Gruppe von Freunden im Studium, bestehend aus Emilia Jäger,
Omar Ismail, Elias Marold, Negin Sadeghi, und mir selbst, untereinander geteilt haben,
wäre das Studium zweifelsohne viel schwieriger gewesen, und eine Vielzahl großartiger
Erinnerungen wären nie entstanden.

Diese Bachelorarbeit wurde durch das Kompetenzzentrum VRVis ermöglicht. Die VRVis
Forschungs-GmbH wird im Rahmen von COMET – Competence Centers for Excellent
Technologies (854174) durch BMK, BMDW, Land Steiermark, Steirische Wirtschaftsför-
derung – SFG und Wirtschaftsagentur Wien – ein Fonds der Stadt Wien gefördert. Das
Programm COMET wird durch die FFG abgewickelt.

vii

Acknowledgements

I am highly thankful for the support I had during the overall time of writing this thesis.
I thank VRVis, most specifically the people associated with the Visdom project, for the
unique opportunity to work in a project as useful, exciting, and big as this, and for their
reliable and helpful support and supervision. I also thank my family and friends for the
support they each provided in their own ways. Without the fun times and advice shared
between my group of longtime studying friends, namely Emilia Jäger, Omar Ismail, Elias
Marold, Negin Sadeghi, and myself, the bachelor studies would have been indubitably
much more difficult, and a lot of great memories would not have been made.

This thesis was enabled by the Competence Centre VRVis. VRVis is funded by BMK,
BMDW, Styria, SFG and Vienna Business Agency in the scope of COMET - Competence
Centers for Excellent Technologies (854174), which is managed by FFG.

ix

Kurzfassung

Überflutungen verursachen viele Todesfälle sowie finanziellen Schaden. Überflutungskar-
ten stellen die Anfälligkeit einer Gegend für Fluten dar und können auf verschiedene
Weisen dabei helfen, Schäden durch Fluten zu reduzieren - Sie sind bereits dafür in
Verwendung, festzustellen, in welchen Gegenden das Bauen neuer Gebäude sicher ist.
Diese Karten online verfügbar zu machen, könnte die Aufmerksamkeit der Öffentlichkeit
bezüglich Überflutungen in spezifischen Gebieten erhöhen. Außerdem sind Karten durch
Verfügbarkeit im Internet leicht erreichbar. Im Zuge dieser Arbeit wurde der Status
Quo bezüglich verfügbarer online Flutkarten durch Recherche erörtert, und eine React-
Komponente mit interaktiver online Karte für den Web Client eines Simulations- und
Visualisierungssystems für Überflutungen implementiert, welche als Überflutungskarte
verwendet wird. Die Karte stellt Fluten durch Polygone dar. Die Eckpunkte der Polygone
werden vom Simulationssystem geliefert, und werden am Web Client über die Karte
gelegt. In der Zukunft könnte die ausgearbeitete Komponente auch mit mehr Interaktivi-
tätsmöglichkeiten ausgestattet werden, die mit dem Simulationssystem korrespondieren,
und Simulationen bearbeiten könnte.

xi

Abstract

Floods cause many deaths as well as lots of financial damage. Flood maps encode areas
susceptibility for floods and can be used in several ways that reduce loss from floods - they
are already in use for determining in which areas it is safe to build new buildings. Making
them available online might increase public awareness of the risks associated with floods
in specific areas. Additionally, maps are easier to reach once they are available on the
internet. In the course of this thesis, the current status quo concerning available online
flood maps is determined by research, and a React-based web map component to visualize
flood maps was developed for the web client of a flood simulation and visualization system.
The map represents floods by polygons. The vertices of the polygons are provided by
the simulation system, and are then rendered over the map on the web client. In the
future, the developed component could include further interactivity that allows more
correspondence with the simulation system, so that it could edit the simulations.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 1
1.2 Flood Maps . 2
1.3 Problem Statement . 2

2 Related Work 3
2.1 Web-based Floodplain Advisory Tool 5
2.2 Informationsdienst Überschwemmungsgefährdete Gebiete (IÜG) 6
2.3 Umwelt Atlas Bayern . 7
2.4 Niederösterreich Atlas . 7
2.5 Flash Flood Risk Map for Upper Austria (FFRM) 8
2.6 Lessons Learned . 10

3 Visdom Web Client 11
3.1 Framework: Visdom System . 11
3.2 State of the Web Client . 14

4 Implementation 21
4.1 Tools . 21
4.2 Implementation Steps . 24

5 Evaluation 31
5.1 Data . 31
5.2 Test Procedure . 35
5.3 Cleaning the Data . 38
5.4 System Specifications . 38
5.5 Statistics and Visualization . 38

xv

6 Results 41

7 Conclusion 45

8 Future Work 49

A Maps Licensing & Pricing List 51
A.1 Map Engines . 51
A.2 Map Tiles . 52

B Data Visualization 57

List of Figures 65

List of Tables 67

List of Algorithms 69

Literature 71

CHAPTER 1
Introduction

This chapter introduces the concepts this thesis is built on, explains the motivation
behind the thesis and the advantages the development of an online flood map can bring,
and explains flood maps and related concepts.

1.1 Motivation
A disaster is a large-scale catastrophe that affects a multitude of people. Disaster
management is the effort to avoid, reduce, and recover from the negative consequences
that a disaster causes. Many different projects, tools, and procedures exist when it comes
to disaster management. Considering the points in time they are used in respect to
the lifetime of a potential disaster, there are some differences between them. Some are
useful in advance, for example for planning cities, while others may help in taking urgent
actions in case there is an emergency.

Flood management is disaster management that focuses particularly on floods. It is
clear that floods cause a lot of damage. Multiple cases of floods with damages in
the millions and billions of euros are known [CEA07, p. 8], [KNK+12], [Abf], [Cen20].
Other than property losses, floods can be lethal as well. Aside from the immediate
and local consequences of floods, they can also have lasting and global consequences,
such as disrupted supply chains [KNK+12]. Despite the risks, flood-prone areas are very
attractive for the forming of settlements [WRF+11, p. 1872], and contain most of the
populated areas [Was11, p. 1].

Climate change is expected to make heavy rain and other weather extremes more frequent
[Int14, p. 552]. Insurance Europe sees the increase of extreme weather events as opposed
to the relatively stable number of geophysical events such as earthquakes and volcano
eruptions also as an indication that climate change will increase the frequency of extreme
weather events [CEA07, p. 9].

1

1. Introduction

Summarizing these points so far: Floods cause lots of damage in various ways, and
it pays off to be prepared for them well in advance. However, it is also possible that
flood mitigation efforts are deployed without a flood actually appearing afterwards. In
this case the investment did not pay off, considering that available budgets around the
world are limited. In 2003, Pearce [Pea03] showed the importance of “sustainable hazard
mitigation” over “response and recovery” approaches in disaster management, and that
disaster management needs to be integrated into community planning, and needs to allow
public participation.

1.2 Flood Maps
Flood maps are a useful tool in various use cases. They help giving an overview of which
areas are likely to be affected by flooding events and creating awareness of them among
the general public. They are also of use to disaster management experts, in order to
prepare flood mitigation plans and install flood prevention measures.

A web map is particularly suitable for a flood map if it is intended to be easily reachable by
a large target user group (e.g., for spreading awareness of flood risk zones to non-experts).
A web map in this case means a map application that is hosted on the internet and
accessible via a browser. The advantage of web maps is their easy accessibility. Modern
operating systems come with a preinstalled web browser, so visiting a website is fairly
easy, and roughly the same process for different operating systems. This is an advantage
of developing a web application - it is inherently cross-platform, and is, in terms of effort,
significantly easier than developing a separate native client for multiple operating systems.
Mobile operating systems also have web browsers. A web-based flood map visualization
that is performant enough to run on a mobile device can also be taken to the site of a
flood event. Furthermore, it could be connected to simulations for decision support.

1.3 Problem Statement
The aim of this thesis is to implement a web map component for the efficient visualization
of easily accessible flood maps. The purpose for these maps is to display flood extents, in
a way that is both understandable and available to the general public.

2

CHAPTER 2
Related Work

This chapter summarizes some previous related work. Sections 2.1-2.5 show some previ-
ously or currently available web-based flood maps. Section 2.6 draws some conclusions
from these works - where possible, these lessons are to be used for the web map developed
as part of this thesis.

Nowadays, there are multiple flood maps that, roughly speaking, try to show how likely
an area will be affected by floods. In 2009, de Moel, van Alphen, and Aerts [dvA09] have
reviewed the state of European flood maps back then. They categorized the maps into
several types: Flood extent maps show the boundaries of a specific (possibly hypothetical)
flood event, such as a HQ100, i.e. a flood that is expected roughly once every century.
Flood depth maps are similar, but they do not only show the border, but also encode the
depth of the water into the map. For flood danger maps, a value ’danger´ is calculated
for each point on the map out of parameters, such as water depth and flow velocity.
Flood risk maps take hazard information and combine it with information about possible
consequences of floods in an area. An example would be a map displaying direct financial
damage, though a map could also consider indirect financial damage, or other non-
financial consequences. They also mention other types of maps, given by mapping other
parameters, such as exposure, coping capacity, flow velocity, etc.

De Moel et al. [Dir07, Fed18] also refer to a EU (European Union) directive (2007/60/EC)
that was adopted in late 2007. In this directive, a flood hazard map is defined to contain
flood extent, water depth, relevant water flow, and flow velocity. These elements need to
be shown for each of three scenarios: Extreme events with a low probability, “medium”
events with a return period ≥ 100 years, and events with a high probability. Member
states of the EU are obliged to create flood hazard and risk maps for the areas which the
states identify as likely to have floods, and make them publicly available.

As discussed previously, flood maps are valuable tools in the fight against floods. They are
useful for planning ahead of a flood event. Also, if available online, they make it easier for

3

2. Related Work

the public to inform itself about flood risks in their region. Hagemeier-Klose and Wagner
[HW09] said in 2009, that “Furthermore, the high frequency of flood events in Europe
and globally over the last years shows an increasing need to provide precise and extensive
information to the general public and especially to people at risk so as to prevent future
damages.” The internet is a useful platform for the purpose of communicating risks
to the public. It provides high platform independence and a wide reach [SMPF00] -
many people are able to access a public resource on the internet. Experts in the area of
flood management also gain advantages from having their tools platform independent.
With relatively little effort, one can support a variety of devices and operating systems,
although sometimes, adjustments must be made. For example, before an application
designed for desktop computers can be properly used on a mobile device, adaptations
may need to be made.

Whenever designing an application it is important to know who your target audience
is. Hagemeier-Klose and Wagner [HW09] have done a formative evaluation of some
web-based flood maps, and implemented their own as well. They differentiate between
laymen and experts. According to them, a simple web map with real-time information
and high readability seems to be enough for laymen, whereas experts will rather need
a complex web GIS system. Their evaluation happens with regards to how well they
communicate the information to the ‘general public’, which they assume to be laymen. Of
the maps they reviewed, all were either too complex for the general public, or too simple
for the experts. The formative evaluation consists of three parts: A creative workshop, an
online survey on Bavaria’s then current web-based flood map, and an analysis of multiple
existing maps. In the creative workshop with 24 people of varying levels of expertise,
the participants looked at 50 (real and fabricated) examples of flood hazard maps and
discussed them. Participants were asked to rate them concerning ‘readability’, ‘design
and visualization’, and ‘content’. Among the results of this workshop were the following
takeaways:

• The maps should be easily understandable and avoid technical terms.

• Legends and categories need to be “readable at first sight”.

• Showing actual past flood events (additionally to the risk zones) strengthens the
“local risk awareness”.

• The color blue is commonly associated with water. Various shades of blue can be
used to represent different zones.

• Which background is useful, depends on the content of the map - “The legally
protected flood plain or the water depths within the one hundred year flood should
be presented on the digital land register map, because the land owner must be
able to recognise his own parcel of land. [...] When dealing with the extension of
flood events with different return periods or with different hazard zones, a digital
city plan or an orthophoto should be used as background because of the easier
orientation possibilities for laymen.” [HW09, p. 569]

4

2.1. Web-based Floodplain Advisory Tool

• As interaction features, searching and zooming should be implemented, as well as
showing background information on selecting an object.

• Gauge levels are particularly useful for communicating the intensity of a risk zone
to the public, as laymen can easily make comparisons based on them.

The online survey conducted by Hagemeier-Klose and Wagner was about the web-based
flood map provided by Informationsdienst Überschwemmungsgefährdete Gebiete Bayern
(IÜG). Interesting findings include that many users that were previously affected by
floods estimate their flood risk to be relatively low, and that users expected different
kinds of flooding information from the service, though the extension of flood plains was
the most frequently expected information.

Performance is another important aspect. If the system has to process a lot of data in each
frame of a running application, it will cause lag, i.e., a noticable pause between frames.
Roth conducted interviews with “geospatial professionals” about the user experience (UX)
of “cartographic interaction” [Rot15]. In an attempt to figure out if a map application
can be considered interactive, the issue of ‘immediacy’ is discussed. The interviews show
that there is a wish for immediate response, and that more lag makes the map to be
perceived as less interactive (p. 104).

Concerning the background of the map, it is important that the relevant data is visible.
Thus, when a flood extent is shown, it should be clearly distinguishable from the
background. In this case it would be a bad idea to use a background that shows bodies
of water, especially in blue.

2.1 Web-based Floodplain Advisory Tool
The “Web-based Floodplain Advisory Tool” (WFAT) by Sugumaran et al. [SMPF00]
seems to no longer be accessible at the point of writing. The article is from the year
2000, and it would not work well with modern browsers as it is a Java Applet, and Java
Applets within the browser are now considered outdated and insecure. Back then, Java
Applets were more common. WFAT was devised as a tool for “planners and other local
decision makers in St. Charles County, Missouri” [SMPF00, p. 1262] with different layers
including flood extent boundaries of HQ100 and HQ500.

5

2. Related Work

Figure 2.1: IÜG

2.2 Informationsdienst Überschwemmungsgefährdete
Gebiete (IÜG)

The IÜG map [HW09] is a flood map for Bavaria. This map is no longer accessible since
30.04.2021. Visitors are encouraged to navigate to the Umwelt Atlas instead (see Section
2.3). It features several map backgrounds and data overlays. On the left side one has
to pick what kind of map one wants to view, e.g. water depth of a HQ100, or a historic
floods map. Selecting the HQ100 map defaults to a greyscale version of a common street
map, which is useful since it contrasts well with the blue overlay. Alternatively one can
choose other backgrounds using the control on the top right. Depicted in Figure 2.1 is
an orthophoto background. Clicking on the map reveals extra information. Each map
also allows different kinds of overlays.

Regarding performance, this map sometimes took time to display the overlays in the
appropriate level of detail, for example when zooming into the map one could see the
overlay bigger but pixelated. However while taking some time to load content, it still
allowed the user to continue navigating without interrupting for the loading process. In
other words, it was still possible to navigate the map about while it loads content.

The IÜG map also included search, measure, sharing, data loading, and printing features.
It supported zooming by mouse wheel scrolling and panning by mouse dragging, as well
as zooming via buttons. A miniature overview map of Bavaria could be toggled by the
button on the bottom right.

The article by Hagemeier-Klose and Wagner [HW09] describes an earlier version of this
application (see Section 2).

6

2.3. Umwelt Atlas Bayern

Figure 2.2: Umwelt Atlas (see [Bay])

2.3 Umwelt Atlas Bayern
The Umwelt Atlas Bayern [Bay] provides a more current flood map for Bavaria. Navigation
and look-and-feel is similar to the IÜG map. This map does not include a historic map
unlike the IÜG map. Other than that it is very similar — sometimes, the overlays take
time to adapt to the current zoom level, but the map remains usable during that time.
It provides lots of overlay options, and a few background options. Again, clicking on a
point reveals additional information about it. Navigation controls are similar to the IÜG
map, a difference is that the zoom level is not directly displayed, however the scale (as
ratio) is visible instead. Both maps feature a graphical scale. A miniature overview of
Bavaria is available. Searching, measuring, data loading, printing, and sharing are also
supported. Figure 2.2 displays risk zones for the three flood return periods that Umwelt
Atlas and IÜG use (HQhäufig, HQ100, HQextrem) and some other active overlays on top of
the greyscale street map.

2.4 Niederösterreich Atlas
The navigation of the Niederösterreich Atlas [Ene] is counterintuitive. By default, its
zoom tool is selected, which means that dragging the mouse with the left mouse button
causes the map to zoom to the selected rectangle, where one would usually use that
interaction to pan - instead, in this mode, panning is performed by dragging with the
right mouse button. If the panning tool is selected, one can use the left mouse button
instead to navigate the map. It also has a tool for getting additional information, and
it can also export it to various formats. It has some measuring, labelling, and printing
tools. There also is a “meeting point” tool, which can be used to put a marker on the

7

2. Related Work

Figure 2.3: NÖ Atlas (see [Ene])

map and share it with someone. There are various overlays available, including HQ30,
HQ100, HQ300, and there are three background options: orthophoto, terrain and surface.
It is also worth noting, that there is a loading dialog with progress bar every time the
map is moved. The map can be moved while it is in the loading state. Sometimes when
moving the map, some tiles of the map that were already loaded disappear during the
loading process. There also is a miniature map of Lower Austria.

2.5 Flash Flood Risk Map for Upper Austria (FFRM)

The Flash Flood Risk Map for Upper Austria (FFRM) [Dip] was made by the Dipl.-Ing.
Günter Humer GmbH. The map contains data within Upper Austria. Navigation is
straightforward - dragging with the left mouse button held is panning, and mouse wheel
scrolling is zooming. There also are buttons for zooming on the map. The map has
been implemented with Leaflet [Vla] as mapping library. Users can choose between six
background options, however only four of them work. The options “Greyscale” and
“Streets” do not work. The remaining backgrounds are those provided by basemap.at.
Basemap and Leaflet are discussed in more detail in Section 4.1.6, because they are used
in the map implemented for this thesis. The problem with the selection of backgrounds
that are available, (even with “Basemap Grau”, which one might expect to be in greyscale)
is that they contain color, specifically both green and blue. There are three overlays
available. The “Risk Map”, as seen in Figure 2.4, uses a scale from green over yellow to
red. The “Maximum Water Depth” overlay, as seen in Figure 2.5, uses a scale from light
blue over blue to purple. The “Stream Network” overlay uses blue lines. Considering
the background and overlay options, there are contrast issues, e.g., the blue of the water

8

2.5. Flash Flood Risk Map for Upper Austria (FFRM)

Figure 2.4: FFRM Riskmap (see [Dip])

(a) Flood depth data on the street map. (b) Flood depth data on the orthophoto map.

Figure 2.5: Grid data on the FFRM map in comparison to buildings in the background.

depth overlay on the water of the background, or the green of the risk map on terrain.
There is a measuring tool and a graphical scale on this map. The zones on this map are
grid based and not so much polygonal as in many other maps. The grid seems fairly
coarse grained, as can be seen in Figure 2.5. The data acquirement process for the map
is described in the work by [RH16].

9

2. Related Work

2.6 Lessons Learned
For developing a simple flood extent web map, there are some valuable lessons to be
learned from the web map examples in the previous subsections:

• Flood extent overlays should be in blue, as that color represents water intuitively.

• The background should not contain blue elements and bodies of water. (For
distinction, overlay colors should not be similar to colors on the background)

• Web technologies that will be supported for a long time by major browsers form a
more reliable base for the application. This is impossible to predict completely. The
World Wide Web Consortium (W3C) defines standards for web applications [W3C],
which include HTML, CSS, JavaScript Web APIs, and more. This makes HTML,
CSS, and JavaScript good choices that have been in use on websites for a long
time. However, sometimes newer Javascript libraries become popular and others
become less maintained or even abandoned. Java Applets and web embedded Flash
applications were previously popular, but are now widely considered outdated.

• People used to interactions with Google Maps might expect dragging with the left
mouse button held down to pan the map, and scrolling the mouse wheel to zoom
the map. For a simple map (i.e. not a complex GIS interface with multiple tools
that the user can choose from), this configuration of interactions should be retained.

• A legend should be easily interpretable. A simple table showing the color in one
column and a label for what the color represents is enough. The need for a legend
is especially given if there are multiple zones (that should have sufficiently different
colors each).

10

CHAPTER 3
Visdom Web Client

For the practical part of my thesis, a Map View for the web client to the Visdom
system has been implemented. In Section 3.1, the features of Visdom and what the
system looks like are summarized. Section 3.2 demonstrates the implemented web client
features, whereas Section 4 describes implementational details and decisions, including the
implementation process, tools/libraries used, problems that surfaced during development,
and design decisions.

3.1 Framework: Visdom System
Visdom [Vis] ‘is a powerful decision support tool for crisis management. It “combines
visualization, simulation, and analysis techniques”. The system consists of a server, a
desktop client, and a web client that is currently in development. The client has two
different modes: In the design mode (see Figure 3.1a), the project is planned using a
node-link graph. The app mode depends on the project - which UI elements are shown,
and what data is displayed on them depends on the nodes and their connections (see
Figure 3.1b and 3.1c). This makes the application quite flexible. The project settings are
synchronized to the server, which actually performs the simulations, and then the client
displays results in its app view. Visdom models multiple variants of a scenario using
the concept of World Lines [WFR+10]. A World Line represents one of multiple related
simulations. Whenever one wants to explore the simulation with a different parameter set
at a specific point, they can “split” the scenario into multiple branches. This way, a tree
is formed. A World Line is, in terms of graph theory, a specific version of a simulation
represented in the path from the root of the tree to a single leaf.

Visdom can be used for many different visualizations. Some examples of interactive
3D visualizations can be seen in Figure 3.2 and in Cornel‘s dissertation [Cor20]. The
environment can be intuitively interacted with, e.g. sandbag barriers can be sketched
into the environment [WKC18].

11

3. Visdom Web Client

(a) Design view, showing the capitalsAt
simplified.visdom project.

(b) OpenGL window, showing a part of the
HQ100 dataset.

(c) “Client Info Vis” window, showing the table view with some sample data.

Figure 3.1: Screenshots of the Visdom desktop client.

12

3.1. Framework: Visdom System

(a) Colors on the facade of the house represent
how likely it is to be exposed to water. (See
Figure 2 in [CKS+15])

(b) Colors of the water and buildings represent
how deep the water is at that point. (See Figure
4.18 in [Cor20])

(c) Composite flow map. (See [CKS+16][Com])

Figure 3.2: Some of the different visualizations that are possible in Visdom.

13

3. Visdom Web Client

Visdom allows collaboration sessions on simulations between experts and decision-makers,
in which questions may come up, for which simulation parameters need to be tweaked
[WKC18]. The results therefore have to be there quickly. Visdom achieves this by using
parallel GPU processing for its simulations. Since Visdom combines simulation, analysis,
and visualization capabilities, it also saves time from running three separate tools and
working with different tools. This workflow also supports designing sewer networks.

Visdom can be used for different simulations. A major point is surface water simulation,
e.g., heavy rainfall or overflowing water bodies that cause floods. Sewer system simulations
can be coupled with the surface water simulations [WKC18]. Crowd simulations, e.g.,
for evacuation scenarios are also supported.

Specific projects using Visdom include:

• Krösl‘s Master of Disaster [KSD+19] is a project that builds on Visdom. It is a
VR software that connects to Visdom. It can be used for flood response training.
It is cheaper and safer to train personell in a virtual environment rather than in a
real one. It is also a strong way to convey the work of a flood manager and the
personal risks of people in a flood to non experts.

• Decision support tool FLOODVISOR (see [VRV, Vis]) for the City of Cologne.

• Simulation based risk zone map HORA 3 for the HORA (Natural Hazard Overview
Risk Assessment Austria) website [BL, Vis].

• Dyke breach simulation for Marchfeld, Austria [Vis].

• Surface runoff water simulation for Amstetten, Austria [Vis].

3.2 State of the Web Client

This section demonstrates the current state of the web client, and describes the features
that were added as part of this thesis.

3.2.1 Text View

The text view displays the incoming numeric and text data as simple lines of text.
Incoming data can each be a single value or a sequence of values. Each text line contains
a label and the first value of the corresponding data. If the data is a vector, it is split
into one text line per component. For example in Figure 3.3a, ‘Very Long Double Vector
Sequence’ is a vector sequence with 22 elements and two components (x and y). Each
label for vector data consists of the name associated with the data and the component.
The text view on the web client has been ported from its desktop client equivalent (see
Figure 3.3b).

14

3.2. State of the Web Client

(a) Text view on the web client

(b) Text view on the desktop client

Figure 3.3: The text view on the Visdom web client in comparison to the one on the
desktop client.

15

3. Visdom Web Client

3.2.2 Table View

The table view (see Figure 3.4a) shows the same incoming data, but not only the first
value like the text view does. Rather than that, the table view contains a table with
a row for each element in the sequence. Vectors are again split into a column for each
of their components. The table is paginated - it uses a custom paginator control, and
requests from the server only the rows that fit on the page. The table view is ported
from the desktop clients table view (see Figure 3.4b). The number of rows that fit onto
a page are a very different between the two clients. This is not surprising, as the web
clients table view uses Material-UI components, which use a larger text size and and big
margins. If the browser window is not wide enough, there will be additional line breaks
in the column headers, which causes the headers to take quite some space. Figure 3.5
shows the same table as before but on a significantly bigger window. If the table is too
wide for the viewport, the table can be scrolled horizontally.

The paginator has up to five page number buttons, and buttons for navigating to the
first, previous, next, and last page. Also there is a text box for entering a row index
manually. These controls are all present on the desktop client table view as well, from
which this table view has been ported. The paginator will not always have five page
number buttons, as the table will not always have more than or equal to five pages.
While on one of the first three pages, the paginator will show page number buttons from
one to five (or less if less pages exist). Analogously, while on the last three pages (n− 2
to n where n is the number of pages), the paginator will show buttons for pages n− 4 to
n (if the pages exist). On other pages, the current page number c will be centered in the
page buttons, and there will be page buttons from c− 2 to c + 2 (again only if the pages
exist). By following these rules, the paginator respects the minimum and maximum page
number of the table, and has five page number buttons available whenever possible. An
example of this behavior can be seen in Figure 3.6. Figure 3.6a shows the paginator
on page 4, where the current page number is centered between the other page number
buttons, two on each side. Figure 3.6b shows the paginator on the last page, in which
case the current page number is to the right of four page number buttons. When the
browser window is resized, the pagination is redone, and navigates to the fitting page.

The number box (see Figure 3.7) can be used for entering a specific row index. The client
navigates to the page containing that row index. The number can be changed by typing
directly into the box, or by using the small arrow buttons that appear when the box is
focussed.

3.2.3 Map View

The map view (see Figure 3.8) is the main contribution of this thesis. While the other
views were just ported from the desktop client to the web client, this view was not. Other
than the table and text view, the map view does not take plain numbers, vectors, texts
or sequences of those. It takes polygon data, and plots the polygons on a web map.

16

3.2. State of the Web Client

(a) Table view on the web client

(b) Table view on the desktop client

Figure 3.4: The table view on the Visdom web client in comparison to the one on the
desktop client.

17

3. Visdom Web Client

Figure 3.5: Bigger web client window with the table view.

(a) Paginator on page 4 (b) Paginator on the last page

Figure 3.6: Paginator of the web clients table view.

The map supports two different map engines (each with different background tiles). Users
select the map type from the dropdown box on the top right of the map view. The
two supported engines are Leaflet [Vla] and Google Maps [Gooa]. Leaflet is the default
setting. The Leaflet map is configured to use tiles from basemap.at [Bas] (“Gelände” and
“Overlay” variants). This combination provides basic street map information, while not
showing bodies of water. The Google Maps map has been assigned a custom style so
that it does not show bodies of water either. Other than that, it is the default Google
Maps map style. Water on map backgrounds was avoided, so that it does not visually
interfere with the polygon overlays that the Visdom web client adds on top of the map
background, in accordance with the guidelines laid out in Section 2.6. The Google Map
also allows users to switch to a satellite image background, in which water is still visible.
Hill shading can also be activated on the Google Maps street map. Figure 3.9 shows
the Google Maps map with a polygonal overlay, and with hill shading activated. The
polygons that are rendered can be concave and have holes, and are rendered with a
transparent blue fill on both engines. To enable hill shading, the user must hover over
the “Map” button in the toggle button group in the top left - upon hovering, a checkbox
labelled “Terrain” is revealed, which then has to be checked.

The navigation features of the map view depend on the navigation capabilities of the

18

3.2. State of the Web Client

Figure 3.7: Focussed number box “Go To Index” in the paginator.

(a) Leaflet map (b) Google map

Figure 3.8: Austria on both map engines running in the map view of the web client.

19

3. Visdom Web Client

(a) at zoom level 15 (b) at zoom level 13

Figure 3.9: Google Map mode of the map view with hill shading enabled. The polygons
rendered on top of the map are loaded from the shapefile vorarlbergPart.shp. The
map view can render concave polygons with holes.

map engines, which both support dragging with the left mouse button for panning and
mouse wheel scrolling for zooming. Both also support double clicking for zooming in,
and also have ‘+’ and ‘-’ buttons for zooming in and out respectively. The Google Maps
map also has the “Street View” feature enabled. Both, Street View and satellite images,
are not intentional features, but rather just carry over from using Google Maps as a
library. Though no effort has yet been put into disabling these features for the Visdom
web client, this might be the case in the future. Position and zoom level synchronize
between Leaflet and Google Maps. This also makes it easier to compare the two maps
for a specific location.

3.2.4 Integration with the System

For the web client to properly run, an instance of the Visdom server must be running and
reachable by the web client. Also, if the client is to actually receive data from the server,
the server must first be configured to run a Visdom project. To do that, an instance of
the desktop client is required for loading a .visdom project onto the server. Once that is
done, the desktop client is no longer required.

20

CHAPTER 4
Implementation

4.1 Tools

The web client uses the following technologies, libraries, and tools:

4.1.1 TypeScript & React

Facebook‘s React [Reaa] framework is used for writing custom user interface (UI)
elements that can be used and written with JSX, which provides an HTML-like structure.
React can be used in combination with Javascript or TypeScript - for the Visdom web
client, Microsofts TypeScript [Typ] is used as the programming language. It is an
extension of the well known JavaScript language. TypeScript programs need to be
compiled to JavaScript programs first before being usable by browsers. TypeScript adds
static typing to common JavaScript, which is dynamically typed. React is used with
Hooks, and additionally Redux [Red].

4.1.2 Leaflet & Google Maps

As mentioned in Section 3.2.3, Leaflet and Google Maps are used as map libraries for
the map view.

4.1.3 Material-UI

The web client uses the Material-UI [Mata] React library for creating UIs that conform
to Googles Material Design design language. Material-UI provides several controls such
as buttons or tables that conform to Material Design out of the box.

21

4. Implementation

4.1.4 Google-Maps-React & React Leaflet

The two libraries Google-Maps-React and React Leaflet are used for integrating Google
Maps and Leaflet with the React framework. Other libraries for these purposes have
been considered, and these were chosen with regards to their code maintenance statistics
on the npm webpage [Npm] and whether they provide the required features. Recent
and frequent updates indicate that a library is well maintained, which is important (see
Section 2.6).

The Google-Maps-React library was made by the Fullstack React team. It exists
on GitHub as companion code to their tutorial “How to Write a Google Maps React
Component” [Ari]. The library is however freely usable and available as npm package
[Goob]. The React Leaflet library [Reab] is available as a npm package [Reac].

4.1.5 Other Used Tools

Npm is used for installing libraries as npm packages and for running npm scripts, e.g.
for building the application using Gulp. Microsofts Visual Studio Code is used for
development - it allows debugging the code and integrates the aforementioned npm
features. React Measure [Read] is used for detecting and reacting to resizing of the
browser window or measuring the dimensions of components in general.

4.1.6 Issues With Specific Tools

The tools that are used have some issues and other characteristics that have to be
considered.

Licensing & Pricing

Multiple products (map engines and tiles) were considered as underlying maps for the
map view before finally settling on Leaflet and Google Maps. Licenses and pricing of
the products make some less easily accessible than others. The considered map engines
were OpenLayers [Ope], Leaflet [Vla], Mapbox GL JS [Map], and Google Maps [Gooa].
OpenLayers and Leaflet are engines that are free to use and have no particular default
map tiles, but can use several kinds of map tiles which have their own pricing and
licenses offered by different hosts. The basemap.at tiles are free to use under the “Open
Government Data Österreich Lizenz CC-BY 4.0” license. The pricing and licensing issues
were compared in a spreadsheet (last modified on 30th of April 2020 - more recent changes
in those products are thus not represented). A list version of the spreadsheet can be
found in appendix A.

Bugs & Limitations

The Google Maps map sometimes gets “stuck” in panning, in the sense that while panning,
it might happen that one can no longer pan until the zoom level is changed. The Leaflet
map is limited to Austria. Some of the available map tiles (i.e. rectangular parts of the

22

4.1. Tools

map) surround Austria, but the quality of the tiles decreases outside the country borders.
Further outside, there are no tiles that can load at all, which causes a 404 http message
to appear in the browser console. The same goes for the zoom level with specifically
‘Gelände’ tiles that are used. To avoid unnecessary 404 messages and the background
disappearing, the Leaflet map is limited to a maximum zoom level of 17. Zooming far
into the outside of Austria near the border still results in these messages, e.g.:

GET https://maps4.wien.gv.at/basemap/bmapoverlay/normal/
google3857/17/45103/70548.png 404 (Not Found)

Problems With Comparing Two Different Map Engines

Comparing the two map types is very tricky. First of all, the map engines are not
directly used per se - they are handled by the React bindings. Just by comparing the
performance of the two map types, one cannot draw conclusions on the map engines,
because the React bindings may negatively affect the performance, and they might affect
the performance differently. Similarly, it has to be considered, that Leaflet and Google
Maps are configured differently in terms of background tiles. The Leaflet map is set up
with two tile sets that are superimposed, meaning there are two png images loaded per
tile unit. Google Maps is set up with a custom style that removes water. This needs to
be remembered when drawing any conclusions on the performance of the maps, especially
with regards to tile loading.

If the two map types had events with the same triggers, it would also be easier to compare.
For example, if both maps had events that trigger when the map and any overlays have
loaded, one could compare the loading times of the maps. Google-maps-react has an
“onReady” event: “When the <Map /> instance has been loaded and is ready on the page,
it will call the onReady prop, if given. The onReady prop is useful for fetching places
or using the autocomplete API for places.” [Goob, Section “onReady”] This description
does not say anything about whether that includes having all tiles loaded, or whether the
overlay polygons have already been drawn. It also has an “onTilesLoaded” event which
fires after it had to load tiles and is done loading them. Again this does not include
any information about whether the polygons were drawn. React Leaflet on the other
hand, provides an “onadd” event on the polygon component, that seems to fire after the
polygons were drawn (although the documentation does not specify that), but in this
case, the background tiles do not have to be loaded.

An easy way of comparing performance would usually be measuring how long a task
takes to perform with the different scenarios, in this case map types. But map navigation
tasks are highly depending on the user. Therefore it was decided to use FPS as a measure
instead. This is still not a perfect solution, since users directly control the amount of
time spent in any given part of the map. Since the different parts of the map are not
equally easy to perform render, they thereby influence the distribution of high and low
FPS values in a recording.

23

https://maps4.wien.gv.at/basemap/bmapoverlay/normal/google3857/17/45103/70548.png
https://maps4.wien.gv.at/basemap/bmapoverlay/normal/google3857/17/45103/70548.png

4. Implementation

4.2 Implementation Steps

4.2.1 Implementing Data & Parsing

The first task at hand was, to parse messages sent from the Visdom server into objects
that the web client can use. This is the task of the DataParser. The Visdom desktop
client contains a DataParser as well, so this was mostly a task of porting parts of it to
TypeScript. The web clients DataParser can parse any of the following data types:

• Text — Strings and sequences of strings

• Vectors — Scalars or vectors of numbers (e.g., float, double, int, uint) and
sequences of those

• Polygons — Sets of polygons: If polygons with holes are transmitted to the server,
this is done by sending one polygon set with all the exterior polygons, each having
their own id, and one set with all the interior polygons (i.e. the holes), each of
whose id must match the exterior polygon that it is a hole in.

• Mesh — Triangle mesh: The web client only makes use of the vertex positions and
the triangles (i.e., which vertices are connected into a triangle) - however, other
mesh data such as texture coordinates are also parsed. These data were already
included in the given information, so it was easy to parse them as well, and make
them available for future versions.

4.2.2 Implementing Text & Table View

Porting the text view was a fairly easy task. There are only a few text elements to place
so nothing sophisticated has happened here. The desktop version served as a template.
Therefore the labels are bold and the values are not. If inbound data does not actually
contain a value, the message “No Values” in italic is displayed where the value would be.

The table view is more complex than the text view. Because the table can include many
entries, paging is required. This was a difficult task on two ends. On the UI side, the
web client needs to figure out how much space is available and adapt the number of rows
that are shown on a single page, as well as provide a paginator control for navigating
between the pages. Apart from UI issues, the paging needed to be properly hooked up so
that it actually gets the correct rows from the server.

Material-UI contains a paginator control with some flexibility. By default, ‘first’ and
‘last’ arrow buttons are not shown, however they can be enabled. The first and last page
number buttons always remain at the same location, no matter which page is selected,
so this is similar to ‘first’ and ‘last’ arrow buttons. Figure 4.1 shows a variant of the
Material-UI Pagination. To get even closer, one can increase the number of pages shown to
the left and right of the current page. However, the Material-UI documentation mentions
that for tables, the TablePagination control should be used instead of the Pagination

24

4.2. Implementation Steps

(a) One variant of the Pagination Material-UI
control.

(b) Paginator of the desktop client.

(c) Material-UI variant on page 6. (d) Desktop client on page 6.

Figure 4.1: The Material-UI Pagination control [Matb] can be configured to look more
like the desktop clients paginator, by adding first and last page arrow buttons.

Figure 4.2: Material-UI TablePagination control. (Image source: [Matc])

control. The TablePagination is actually less adaptable to the layout and features of
the desktop client, and lacks the page number buttons entirely. Both, Pagination and
TablePagination, lack the ‘Go to Index’ number box. Instead, a custom Paginator control
was composed out of Material-UI elements such as Buttons in a ButtonGroup, and an
Input with an InputLabel, using a Paper element as container. The Paginator element
requires several callback methods to be passed to it. These callbacks allow the Paginator
to be fairly agnostic of what it is supposed to paginate. Any effects that happen to the
table after navigating using the Paginator are defined with the callbacks. However, the
table view is the only component that uses the Paginator right now.

The text view also interacts with pagination. The data being displayed is a single page
with one row. No other rows are going to be displayed on the text view, so this is a
reasonable shortcut in terms of communication over the network. Views have to use a
workaround for dealing with pagination. The server will not send any data in case the
page settings (i.e., page size and where the current page starts) are the same as the last
time the page settings were changed. It will only return data, if the page settings have
changed. This will often pose a problem when switching to a view, or when initially
starting the application. An example where this is especially easy to see is the text view.
After the text view was loaded, the page settings are always set to a page size of one and
a starting index of zero (i.e., the first element). If one were to close the application here,
and start the application afterwards (which defaults to the text view), it would again
request a page size of one with the first element in the data being the starting element of
the page. This means that the page settings would not change. The text view therefore
would not receive any data. A simple workaround has been added to the text and map
views. In the text view, the settings are set to a page size of two, and right afterwards
are set back to a page size of one. In case of the table view, the workaround was not
added; each time a table page is loaded (i.e. when the table view is switched to, or when

25

4. Implementation

Figure 4.3: Dimensions that are used in the calculation for how many rows fit on a table
page.

page navigation happens), it only loads the correct page. For the map view, the pages
have no specific meaning, as polygon and mesh data is not paged, however, it still needs
to update page settings in order to get data, so the same workaround as in the text view
is added. This combination means that the views always load the data if available, even
the table view, which does not contain the workaround.

When using pagination on a table with a given height, the number ntableRows of rows
that fit in the available space has to be calculated. Given the height htable of the entire
table (including the header and paginator), the height htableHeader of the header, and the
height hpaginator of the paginator, the height htableRows that is available to the data rows
(see Figure 4.3) is as follows.

htableRows = htable − htableHeader − hpaginator

With the calculated available space, and the height hrow of the individual rows, ntableRows
can be found.

ntableRows =
⌊

htableRows
hrow

⌋
26

4.2. Implementation Steps

However, this results in the layout breaking in some edge cases, showing one line too
many, which is then cut off by the paginator. The following formula was found to be
working in those edge cases.

ntableRows = max
(⌊

htableRows − 1px
hrow

⌋
, 0

)

hrow and hpaginator (static) are expected to be the same every time, even on different
sessions. However, htableHeader (dynamic) depends on the browser size and the incoming
data. That is because column headers for vectors show minimum, mean, and maximum
values in addition to the number of elements that are shown on every column header.
htable (dynamic) depends on the window size of the browser as well. Incoming data can
vary between sessions, but the window size can change at any time. Thus, the calculation
needs to be dynamic, and has to be done whenever the browser is resized. The React
Measure [Read] library helps with that.

Alternatively, the table could be built using a scrollable area, which would allow ntableRows
to be set to any number, regardless of available space on the screen. The approach with
ntableRows being variable mimics the behaviour of the desktop client and was chosen for
that reason.

4.2.3 Porting Polygons and Meshes & Implementing Map View

As opposed to text and vector type data, parsing polygon and mesh data was implemented
using the visitor design pattern in the other components of the Visdom system. The
visitor pattern was not replicated for the web client - instead, for simplicity, polygons
and meshes are implemented like the other data types.

After the text and table view, the map view was developed last. The view started out
as a simple debugging view that showed the polygons in a text representation. This
view was then extracted into the DebugMapComponent, and GoogleMapComponent and
LeafletMapComponent were added. A dropdown box at the top right (see Figure 4.4)
can be used for switching between the map types. The DebugMapComponent has been
removed and is thus not selectable in the dropdown box.

4.2.4 Improving Map View Performance By Discarding Polygons

To users, only polygons that are visible on screen can provide information directly.
Polygons outside the map view bounds would be needlessly passed along to the map
react components. These polygons can be discarded beforehand, in order to save valuable
memory space, and consequently, calculation times.

Figure 4.5 illustrates the current approach. The blue rectangle represents the bounds of
the map view. Bounding boxes of polygons are calculated beforehand, when assembling
the vertices of the polygons from the parsed data. For all given polygons, the process is
described in Algorithm 4.1.

27

4. Implementation

(a) Dropdown box closed (b) Dropdown box open

Figure 4.4: Map type selection dropdown box in the map view.

Algorithm 4.1: Finding the bounding box of a polygon
1 north, east, south, west← null;
2 foreach Vertex v in polygon do
3 if v.latitude > north then
4 north← v.latitude;
5 end
6 if v.longitude > east then
7 east← v.longitude;
8 end
9 if v.latitude < south then

10 south← v.latitude;
11 end
12 if v.longitude < west then
13 west← v.longitude;
14 end
15 end

28

4.2. Implementation Steps

Map View

Bounds

(a) Initial situation: Polygon shapes consisting
of multiple polygons.

Map View
Bounds

(b) Polygons with their bounding boxes. Bound-
ing boxes that intersect the map are color-coded
in green, and the other bounding boxes in pink.

Map View
Bounds

(c) Polygons that are to be discarded are color-
coded in pink

Map View
Bounds

(d) Polygon shapes after the reduction

Figure 4.5: Example showing polygons and the bounds of a map view. If a polygon’s
bounding box does not intersect with the map, it is discarded.

29

4. Implementation

As the vertices have to be iterated through once for assembling the polygon objects
anyway, it is fairly efficient to determine the polygons bounding box here. Two rectangles
R1 and R2 that are parallel to the axes intersect if the following condition is true, given
that n(Ri), ... , w(Ri) are the coordinates (north, ... , west) of the rectangle Ri:

¬ [(s(R1) > n(R2)) ∨ (w(R1) > e(R2)) ∨ (n(R1) < s(R2)) ∨ (e(R1) < w(R2))]

In more easily understandable terms, for two rectangles that are parallel to the axes to
NOT intersect, one of them needs to be completely aside of the other in any direction.

Only the polygons with bounding boxes that intersect the map view bounds will be
passed to the map components. All polygons discarded this way are invisible. As seen
in Figure 4.5b, polygons may lie completely outside of the map view, but still have a
bounding box that intersects the map view.

The intersection checks need to be done every time the map boundaries change. Map
navigation (panning and zooming) and resizing the browser window cause map boundaries
to change. React Measure is not required here, as the maps can already detect browser
resizing. React Leaflet provides an ‘onresize’ event, and google-maps-react provides an
‘onBoundsChanged’ event, both of which fire on their respective map type whenever the
browser resizes.

30

CHAPTER 5
Evaluation

This chapter contains information about testing and evaluation during and after de-
velopment. The evaluation consists of several user performed tasks, in which the user
navigates the map in simple interactions like panning and zooming. The general aim
of these tests is to determine whether the map is computationally performant enough
to not be detrimental to the user experience. The evaluation as well as the measuring
method are described in Section 5.2. Section 5.1 describes the files that were used during
development and evaluation. Tthe process for cleaning the results of the evaluation is
described in Section 5.3.

5.1 Data
This section describes the input data used for developing and testing the application. In
Section 5.1.1, the .visdom files are explained, including floodPolygonsMap.visdom,
which loads ESRI Shapefiles. The various Shapefiles used with it are listed in Section

Project File Meshes* Polygons* Vertices

capitalsAt.visdom 3 9 6270
capitalsAtSimplified.visdom 2 9 612
SyntheticSplitPolygon.visdom 0 4 70
floodPolygonsMap.visdom with...
...splitPolygon.shp 0 19 14 679
...sparseVorarlberg.shp 0 771 97 006
...vorarlbergBig.shp 0 12 415 2 146 902
...vorarlbergPart.shp 0 697 80 208

*Polygons within meshes are not counted. Multiple subpolygons of one polygon shape (i.e.
several polygons with the same id) are counted individually.

Table 5.1: Project files and ESRI Shapefiles, and the data they contain..

31

5. Evaluation

Figure 5.1: Project file capitalsAt.visdom in Leaflet mode

5.1.2. Table 5.1 lists both types of files with the data they include for the web client to
handle.

5.1.1 Projects

capitalsAt.visdom (see Figure 5.1) has circles around the Austrian capitals, and
three mesh primitives: A box in Vienna, a sphere in Bregenz, and a cone in Salzburg.
The circles around the capitals have 20 segments each. The project was made to test
polygon and mesh data rendering capabilities of the web client during development.

capitalsAtSimplified.visdom (see Figure 5.2) is similar to capitalsAt.visdom,
but with 10 segmented circles instead of the 20 segmented ones, a less detailed sphere,
and without the cone.

SyntheticSplitPolygon.visdom contains two polygons with the same id, each
with a hole. The web client does not expect multiple polygons with the same id, but it
will not have any problems with them, as long as they do not contain holes. The Google
Map does not display such configurations correctly. Figure 5.3 shows the graphical bug.
The map should show two circles with holes. However, one of the circles is filled solidly.
The Leaflet map does not have any problem with the setup.

floodPolygonsMap.visdom loads an ESRI Shapefile and sends it to the web client
as a polygon. Different Shapefiles were used in testing the application. Figure 5.4 shows
the shapefile vorarlbergPart.shp.

32

5.1. Data

Figure 5.2: Project file capitalsAtSimplified.visdom in Leaflet mode

Figure 5.3: Project file SyntheticSplitPolygon.visdom in Google mode

33

5. Evaluation

Figure 5.4: Project file floodPolygonsMap.visdom in Leaflet mode
34

5.2. Test Procedure

5.1.2 Shapefiles

All of the Shapefiles that were used are different subsets of a dataset provided by VRVis,
containing the flood extent boundaries of an HQ100 in Vorarlberg.

• splitPolygon.shp (see Figure 5.5a) includes polygons with duplicate ids.

• sparseVorarlberg.shp (see Figure 5.5b) consists of polygons chosen so that
they are sparsely spread out over an area with some larger gaps between them.

• vorarlbergBig.shp (see Figure 5.5c) is a big shape file of roughly 51.008 KB
and 2 146 902 vertices.

• vorarlbergPart.shp (see Figure 5.5d) is the default Shapefile in floodPoly-
gonsMap.visdom and has 80 208 vertices.

5.2 Test Procedure

The developed application was evaluated with manual tests. The tasks are defined in
Table 5.2. Some of these tasks are performed in the proximity of polygons on the map,
whereas others are not. This distinction is important, because the it can demonstrate
whether the rendering of polygon overlays has an influence on the clients computational
performance. During the tasks, the frame times in milliseconds are recorded. The
tasks have to be performed in multiple runs for each map type. All tasks in all runs
are executed using the project file floodPolygonsMap.visdom and the shapefile
vorarlbergPart.shp.

Task Posstart Posend zstart zend Scen. Type
1 Pan Schwarzach St. Anton 14 14 T → F
2 Pan Bödele Schwarzach 11 11 T
3 Pan St. Anton Vienna 11 11 F
4 Zoom out St. Anton St. Anton 17 12 F
5 Zoom out Dornbirn Dornbirn 17 12 T
6 Zoom in St. Anton St. Anton 12 17 F
7 Zoom in Dornbirn Dornbirn 12 17 T
8 Pan St. Anton Schwarzach 14 14 F → T

Table 5.2: Tasks within the manual test procedure to be done with both map types. The
different scenario types (labelled “Scen. Type” in the table) describe whether the task
happens near polygons in the overlay (T) or not (F). “F → T” and “T → F” mean the
scenario moves into or out of such an area respectively. “Pos” and “z” mean the position
and zoom level respectively as pre- (Posstart, zstart) and post-conditions (Posend, zend).

35

5. Evaluation

(a) splitPolygon.shp (b) sparseVorarlberg.shp

(c) vorarlbergBig.shp.shp (d) vorarlbergPart.shp

Figure 5.5: ESRI Shapefiles

36

5.2. Test Procedure

5.2.1 Recording & Measuring

The measurements are done using the Chrome DevTools Profiler. Before each task in
each run, the profiling is started, and after the task, the profiling is stopped again. Each
profiling is stored in a folder structure, seperating the Leaflet and Google Map profiles at
the top level, then seperating run one and two - in the run folders, one profiling (as json
file) per task is stored. After all profiles are done, the following JavaScript function is
used to bring all frame durations from a profile into MATLABs array format:

matlabize = () => {let arr = UI.panels.timeline
._flameChart._model._frameModel._frames.map((f) =>
f.duration); let st = "[" ; for(let i = 0; i < arr.length;
i++) {num = arr[i]; st += num; st += " " }; st += "]";
return st }

This function is adapted from an answer on Stack Overflow [Sta]. To use it, one needs
to open the Chrome DevTools for the web app in a seperate window (dt1), and then
open another Chrome DevTools window (dt2) for the previously opened dt1. In dt1, the
‘Performance’ tab has to be open, and a profile needs to be loaded. Then, in dt2, in the
‘Console’ tab, when the matlabize function has been declared, the frame durations in
milliseconds (in MATLABs array format) can be obtained by entering ‘matlabize()’
into the console. This list of frames may contain long idle frames, in which no graphical
updates happen. This may also be due to no interaction happening at all.

A measurement coming directly from the framework would be preferred. Unfortunately,
there is no obvious solution to do that for comparing lag in two different libraries for React.
While one can count the times a component rendered, that does not say much about
how many graphical updates happened, because the two libraries, react-leaflet and
google-maps-react seem to behave differently in this aspect. For example, when
dragging, the Google Map only re-renders as a component when dragging stops, while
the Leaflet Map re-renders many times during the dragging. In this example, the number
of times the Leaflet Map re-renders during a set time interval is much more meaningful.
In the end, the re-renderings within an interval are not meaningfully comparable. The
same issue exists for measuring map load times, as already discussed in Section 4.1.6.

The following adaptions have been made to the application for the sole purpose of simpli-
fying the testing purpose and making the process more streamlined and reproducable:
Lines have been added between the points where the testing user has to pan. That means
one line each for the connections described in Table 5.2. To make it easier to start each
task, I tried to assign the number keys on the top of the keyboard to the start locations

— pressing one of them should take the map to the related point. This did not work
properly for multiple reasons, e.g., the Google Map never reacted to these key presses,
and on the Leaflet Map, pressing the key with the digit 6 also caused a change in the
zoom.

37

5. Evaluation

5.3 Cleaning the Data

The raw data, i.e., the results as mentioned in Section 5.2.1, were cleaned up with the
steps described in this section to remove some influence of human error on the test
results. That is, because the time between starting the profiling and actually starting
the interaction with the map can take different durations every time. This can influence
the outcome while not having to do with the maps performance. The first frame in
which the event corresponding to the beginning of the interaction is determined and
frames before that are discarded. This happens in order to eliminate the time before
the actual interaction. For zoom events, the DevTools Timeline is searched for a wheel
event, for pan events, it is searched for a mousedown event. The wheel event fires on
scrolling the mouse wheel, whereas the mousedown event fires when the mouse button is
pressed, which is required for a dragging interaction. Scrolling is indicative of zooming,
and dragging is indicative of panning. Thus, these events were used. The frame that
contains these events is considered the first frame of the interaction. Figuring out the
last frame was more tedious: In this case the last fired event indicative of the interaction
has to be either on the last considered frame or on a frame before it. It is possible that
important frames for the interaction happen after the event fires. In a zooming task this
is usually the case, because when scrolling the mouse wheel steps, the last ‘wheel’ event
fires, but only afterwards does the map update to the proper zoom level. To account
for this, the last graphical change is manually found by comparing the frames to each
other. In panning interactions the event ‘mouseup’ can happen without any graphical
differences afterwards - however it still might be the case that tiles of the map have to
load. This is taken into consideration by manually looking for the last graphical change,
however that introduces human error.

Furthermore, especially the Leaflet measurements beginning events (‘mousedown’ or
‘wheel’) lie within a frame that includes the idle time before the interaction. The frame
might start at a significantly earlier time than the actual interaction. Thus the first
frame has to be discarded, as its data is not comparable, and highly dependent on the
map being used (Google or Leaflet Map) and the amount of time taken between starting
the profiling and the actual interaction.

5.4 System Specifications

For testing (i.e., the procedure specified in the sections above), visualizations, and
calculations the system described in Table 5.3 has been used.

5.5 Statistics and Visualization

This section describes the calculations and the software tool used for transforming the
cleaned data into charts and comparable values. MATLAB R2020a is used for calculating
and plotting them. The system specified in Section 5.4 was used. Among means and

38

5.5. Statistics and Visualization

medians, the Concluding Chapter uses the ratio rbf(t) as a comparable value. Given a
set S of frames f and a FPS threshold t:

Sbf(t) = {f ∈ S : FPS(f) < t}

rbf(t) =

∣∣∣Sbf(t)

∣∣∣
|S|

FPS(f) here denotes how many frames of the same duration as a given frame f would fit
in a second. FPS are usually defined the other way around, as it describes the actual
number of frames that happened within a given second. For the thesis, FPS values are
directly calculated from the frame duration. This is done by first multiplying the frame
duration in milliseconds by 1000 in order to convert them to seconds, i.e., the amount of
seconds it took to render each frame. The FPS are the reciprocal of that value. Therefore,
given a frame f and its duration d(f) in ms, the FPS of that frame are calculated using
the formula FPS(f) = 1

d(f)∗1000 .

Sbf(t) is the set of all frames in S that have an associated FPS value lower than the given
threshold t. The developer web pages of Google and Mozilla both talk about 60 FPS for
good user experience: In the Chrome DevTools pages [Chr], the statement “Users are
happy when animations run at 60 FPS.” can be found, while the MDN Web Docs pages
say “The goal frame rate for in web site computer graphics is 60fps.” [mdn]. Since 60
FPS is considered a target for websites, one of the values of t that are explored is 60.
Other values of t are 30 and 10. rbf(t) is the ratio of “bad frames” with FPS lower than t
to the total number of frames.

Operating system Windows 10 Home
OS version 10.0.19041 Build 19041

CPU Intel® Core™ i7-6700HQ CPU
@ 2.60GHz, 2592 Mhz, 4 Core(s),
8 Logical Processor(s)

Architecture 64 bit
RAM 16 GB
GPU NVIDIA GeForce GTX 965M

GPU driver version 27.21.14.5241
On-board graphics Intel® HD Graphics 530

On-board graphics driver version 22.20.16.4749
CUDA driver version 11.0

CUDA runtime version 10.1
Device Omen by HP Laptop

W8Z00EA#ABD
Visdom server version 2020.2002.0-904ed6eab3 Dev

Table 5.3: System Specifications of the machine for Testing.

39

CHAPTER 6
Results

In this chapter, results are presented, and some interesting aspects of them are highlighted.
Conclusions from these results will be drawn in Chapter 7. As described in Section 5.5,
MATLAB is used for statistical calculations made here.

The durations in milliseconds for all frames that were considered part of the interactions
can be seen in the tables in the appendix. The tables and charts in this section contain
mean, median, and rbf(t) values calculated from the data. The tables in this chapter are
rounded to two decimal places.

Tables 6.1 and 6.2 show the mean and median FPS values respectively of each task for
each run. A row represents a run, and a column represents a task.

Task Nr.
Run 1 2 3 4 5 6 7 8

Leaflet Map 1 44.31 34.07 51.70 66.37 55.63 48.04 48.59 40.18
Leaflet Map 2 45.93 39.88 19.67 63.31 54.56 42.66 40.57 44.33
Google Map 1 45.47 75.56 52.71 36.69 32.47 42.33 41.06 48.01
Google Map 2 50.01 41.96 55.13 40.75 24.73 53.04 41.86 45.89

Table 6.1: Mean FPS per task per run rounded to two decimal places. Higher is better.

Task Nr.
Run 1 2 3 4 5 6 7 8

Leaflet Map 1 58.63 52.68 42.06 59.75 59.83 57.70 39.28 51.28
Leaflet Map 2 57.83 58.76 19.56 59.93 59.71 42.62 30.20 58.83
Google Map 1 57.98 36.65 59.84 25.00 26.16 44.68 33.25 58.82
Google Map 2 54.31 40.51 54.35 48.43 9.75 51.11 51.13 52.00

Table 6.2: Median FPS per task per run rounded to two decimal places. Higher is better.

41

6. Results

Task Nr.
Map 1 2 3 4 5 6 7 8

Leaflet Map 45.27 36.55 44.13 64.73 55.06 45.43 44.82 42.37
Google Map 47.61 55.65 53.83 39.00 28.77 48.77 41.48 47.02

Table 6.3: Mean FPS per task per map rounded to two decimal places. Higher is better.

Task Nr.
Map 1 2 3 4 5 6 7 8

Leaflet Map 58.12 58.62 21.91 59.83 59.77 53.73 32.88 58.29
Google Map 55.70 39.23 59.28 38.80 17.20 50.38 39.32 57.38

Table 6.4: Median FPS per task per map rounded to two decimal places. Higher is better.

Task Nr.
1 2 3 4 5 6 7 8

46.48 43.52 48.77 56.68 46.82 47.38 43.14 44.68

Table 6.5: Mean FPS per task rounded to two decimal places. Higher is better.

Tables 6.3 and 6.4 are similar to Tables 6.1 and 6.2, but use maps instead of runs as
rows, i.e., the frames from the first and second run with each map are concatenated into
one set. A row represents one of the two maps, and a column represents a task.

Tables 6.5 and 6.6 show the mean and median FPS for each task over all runs over both
maps. This is useful for figuring out how difficult each individual task is for the system.
Tables 6.7 and 6.8 show the mean and median FPS for each of the maps.

Table 6.9 shows the rbf(t) for each t ∈ 10, 30, 60 for each run and each task. Table 6.10 is
similar, but uses maps instead of runs as rows, and also has an ‘all’ column per different
t, and an ‘all’ row. The ‘all’ column contains the rbf(t) over all frames in a task, i.e.,
frames from both Google and Leaflet Map runs. The ‘all’ row contains the rbf(t) over all
tasks with a specific map.

Task Nr.
1 2 3 4 5 6 7 8

57.86 51.85 47.21 59.24 59.19 51.31 37.69 58.10

Table 6.6: Median FPS per task rounded to two decimal places. Higher is better.

42

Leaflet Google
48.17 46.13

Table 6.7: Mean FPS per map rounded to two decimal places. Higher is better.

Leaflet Google
58.71 52.65

Table 6.8: Median FPS per map rounded to two decimal places. Higher is better.

rbf(10) rbf(30) rbf(60)
Task L1 L2 G1 G2 L1 L2 G1 G2 L1 L2 G1 G2

1 0.12 0.06 0.05 0.04 0.37 0.33 0.34 0.32 0.70 0.69 0.66 0.65
2 0.44 0.30 0.36 0.38 0.44 0.30 0.36 0.38 0.70 0.65 0.55 0.69
3 0.09 0.08 0.04 0.03 0.43 0.97 0.23 0.24 0.70 0.97 0.52 0.64
4 0.03 0.03 0.19 0.17 0.14 0.08 0.55 0.43 0.59 0.50 0.76 0.76
5 0.07 0.06 0.38 0.51 0.20 0.18 0.50 0.66 0.54 0.62 0.79 0.83
6 0.12 0.16 0.18 0.12 0.40 0.44 0.37 0.30 0.61 0.71 0.74 0.68
7 0.22 0.23 0.34 0.28 0.44 0.50 0.46 0.38 0.70 0.73 0.78 0.74
8 0.11 0.14 0.10 0.13 0.46 0.34 0.28 0.34 0.74 0.68 0.64 0.67

Table 6.9: Bad Frame Ratios rbf(t) per task and run rounded to two decimal places. Ln
is short for the nth Leaflet run; Gn analogously for Google. Lower is better.

rbf(10) rbf(30) rbf(60)
Task Leaflet Google all Leaflet Google all Leaflet Google all

1 0.09 0.05 0.06 0.35 0.33 0.34 0.69 0.65 0.67
2 0.38 0.37 0.38 0.38 0.37 0.38 0.68 0.63 0.66
3 0.08 0.03 0.06 0.56 0.24 0.41 0.76 0.58 0.67
4 0.03 0.18 0.08 0.11 0.48 0.22 0.54 0.76 0.61
5 0.07 0.44 0.18 0.19 0.58 0.31 0.58 0.81 0.65
6 0.14 0.14 0.14 0.42 0.33 0.37 0.66 0.7 0.69
7 0.23 0.31 0.27 0.47 0.42 0.44 0.72 0.76 0.74
8 0.13 0.12 0.12 0.40 0.31 0.35 0.71 0.65 0.68

all 0.1 0.12 0.33 0.35 0.67 0.67

Table 6.10: Bad Frame Ratios rbf(t) per task and map rounded to two decimal places.
Lower is better.

43

CHAPTER 7
Conclusion

As previously discussed, comparing the different map types is a nontrivial task. Looking
at the tables and figures from the results section, we can see that in direct competition
between Leaflet and Google Maps, such as the mean FPS (see Table 6.7), median FPS
(see Table 6.8), and ‘bad frame’ ratios (see row ‘all’ in Table 6.10), Leaflet Maps performs
slightly better or equally good as the Google Maps map (over all tasks). Looking at
these values individually for each task (see Tables 6.3, 6.4, and 6.10), we can see Google
Maps performing better than Leaflet Maps in some tasks. Either way, it is a very close
call. As of now, FPS is a popular measure as far as animations and user experience are
concerned. From this perspective Leaflet does perform slightly better.

Intuitively, it seems that the map performs worse with many vertices in memory. To
simplify the wording of this discussion, the terms “difficult tasks” and “easy tasks” are
used. User interactions in difficult tasks consist of navigation around points on the map
near many vertices, whereas the interactions in easy tasks do not.

Three pairs of tasks are examined, each with a easy and a similar difficult task. They are
similar in the sense that the users need to do essentially the same interaction but for
different locations. These pairs are Tasks 2 (difficult) and 3 (easy), 5 (d) and 4 (e), and
7 (d) and 6 (e). Of these pairs, the first one (2 and 3) is probably the one with the least
similar tasks, as it is a panning task and the distances to pan in each task are not equal.
The other tasks are zooming tasks, where the tasks in each pair have the same pre- and
postconditions (other than the zoom levels). In Figures B.1 – B.5, we can see the mean
FPS, median FPS, and rbf(t) of these pairs. We can see that in most comparisons, the
lazy tasks perform better. This supports the assumption of large numbers of vertices in
close proximity of the map view center decreasing the maps performance.

Figure B.6 shows the FPS at all frames (sorted in ascending order by FPS). The regions
defined by the thresholds at 10, 30 and 60 FPS are difficult to see due to some frames
having very high FPS values. Figure B.7 is similar, but clamps the FPS values to the

45

7. Conclusion

range [0, 70]. This makes the zones more visible, while still visualizing how many frames
were in which zone. The values at the very top of each graph do not match the actual
FPS of those frames. Using the regions, we can quickly see how many frames in a specific
run were significantly worse or better than one of the thresholds. For example, one can
quickly see that more than half the frames in each run for Task 7 were below the target
of 60 FPS. For both maps there are a few outlier frames with relatively high FPS. The
graphs also show that some runs had significantly more frames in the recordings than
other runs. Note that this does not mean that they necessarily took longer in time, seeing
as each frame can last varying amounts of time.

File capitalsAtSimplified.visdom contains a sphere with many vertices. This
file is demonstrative of a correlation between number of vertices in the React tree and
the perceived lag in the application. Different zoom levels on the sphere mean different
numbers of vertices being included in the tree. On a zoom level of 15 with 150-260
vertices, the Leaflet Map is very usable, whereas interaction with the Google Maps does
not feel fluid at all on this level, possibly because of the noticeable time it takes until
the new vertices are loaded. On zoom level 14 with ∼380 to slightly under 1200 vertices,
the Leaflet Map has very noticeable lag - on the lower vertex counts this is not to a
degree where the map is uncontrollable (mostly 5-7 FPS), but somewhere around 500
vertices it gets significantly worse to control. By 1000 vertices, the point where the lag
on the Leaflet Map makes it a bad experience has been reached (mostly 3 FPS). As for
the Google Map on the same zoom level, on the lower vertex counts, sometimes 4 FPS
are reached, however between those frames are many frames with 60 FPS and higher.
Similarly on the higher vertex counts, it often gets to approximately 2 FPS, but then
has many much better frames in between. This phenomenon illustrates a problem with
Google Maps as far as perceived lag and quantifiable data from the profiler is concerned:
Values such as the mean or median FPS and the previously discussed bad frame ratio
rbf(t) (see Section 5.5) are massively influenced by the many good frames between the
few but significant bad frames.

The following is a synthetic example to further illustrate the problem: Given one frame
that takes 5000 ms followed by 20 frames that take 1 ms each, users would very much
notice the lag from the first frame, whereas the 20 other frames might not make much of
a difference to them. The mean duration would be 5000+20

21 ≈ 239.0476 ms. Converted to
FPS, that makes 4.1833 FPS. In comparison to the 0.2 FPS that a frame of 5000 ms
would have, that is quite a significant difference. The perceived lag might be higher than
what the average FPS might suggest. This problem has yet to be solved, in order to have
truly representative and comparable data - measuring perceived lag might solve this, for
example with a big study with many independent users.

In Section 2.6, some lessons learned about the other maps were noted. The following
paragraphs, review how some of the guidelines extracted from the related work were
applied and how some are not yet fulfilled.

Comparing performance between very different maps, is to my knowledge not reasonable,
as the maps are quite different, have different toolsets, or might take shortcuts by

46

displaying overlays that were rendered into bitmaps beforehand. The Google and Leaflet
Map types offer very similar functionality to the user, and are similarly suited for our
web application, which is why the comparison of performance between them made sense.

As visible in all of the screenshots of the map view in this thesis, the overlays do not
have any label or legend. The implementation can as of this point be used for all kinds
of maps that are able to make use of polygon overlays. Though, since it was made with
the intention of using it as a flood extent map, it should be extended with labels and
legends. An option for keeping it use-case independent, is making labels and colors to be
defined in the project file.

In Section 4.1.6, some issues regarding the individual map types were mentioned. As
mentioned there, the basemap.at tiles are limited to Austria, therefore, for using the
Leaflet map type outside of Austria, a different tile set will have to be used.

The polygon overlays are in blue, while blue has been avoided in the background. Thus,
the problem of overlay colors being ambiguous is avoided. This has to still be tested
by people with types of color blindness. The controls for the map are intuitive — they
function much like in the popular tool Google Maps, and there are no complex drawing
or measuring tools.

The level of detail shown on the map depends on the input data. As far as the web client
is concerned, there is a technologically imposed limitation. Javascript can only represent
numbers with a limited accuracy, as a finite number of bits can only represent so many
numbers. The epsilon (Number.EPSILON), i.e., the smallest difference between two
numbers, lies at approximately 2.22 ∗ 10−16. It is possible that the libraries, especially
those providing access to the maps, limit the level of detail further, however no information
on this was found.

47

CHAPTER 8
Future Work

One of the subsequent steps in the Visdom web client is a WebGL view. The WebGL
view was the original end goal in this endeavour. It is supposed to implement a hybrid
rendering strategy, where the Visdom web client and server render the same 3D scene.
The server renders higher quality images, but as it will take time for the image to
be rendered and transferred over a network connection, the client is responsible for
rendering frames in between. This strategy would enable a practical compromise between
fluid interactions and high quality images. The WebGL view would be the web clients
equivalent of the OpenGL window on the desktop client.

More elaborate studies about this version or future versions of the web client’s map view
are needed, including a measure of performance that can be fairly compared between
different map types. My assumption is, that the most significant result would be given
by a large scale study about perceived lag with a large number of participants in disjoint
groups - one for each map type. Then, questions like “Did you notice any annoying
or distracting performance issues with the map when performing this task?” can be
asked, and the percentage of people responding a certain way can be compared between
questions and map types. A map type with a few frames with very low FPS can get better
performance metric results by having many frames with high FPS. Asking users directly
if what they perceived has been annoying or distracting might be a better approach,
however it is depending on the questioned people’s subjective judgement and patience,
and would increase the amount of potential human error involved.

As far as performance increasing features go, the simple bounding box intersection check
implemented on the web client is a good feature. Further performance improvements
could come from more efficient communication with the server. If the web client’s
map bounds and zoom level are synchronized to the server, the server can then do two
additional optimizations. Using the bounds, the server can take over the intersection
check in order to avoid unnecessarily sending all polygons over the network and also
reducing the workload on the web client. Using the zoom level, the server may decide to

49

8. Future Work

send a less detailed version of the polygon. This technique is called LOD (level of detail).
For example, if a user zooms far out of the map, they will not be able to see a lot of
details that are created with many vertices. However, if they zoom in close, they might
be able to differentiate different vertices from each other. This means that, on low zoom
levels, we do not need as much detail, and consequently less vertices. This might bring
valuable performance improvements.

The ability to switch between multiple map types is in the current version of the web
client for comparing different configurations. This feature can of course be kept for as
long as it is deemed useful. As soon as a conclusive decision on which map system is
better suited for the flood map use case has been reached, it is reasonable that the
switching feature is removed.

50

APPENDIX A
Maps Licensing & Pricing List

A.1 Map Engines

• Leaflet

– Comments: Currently used
– License & Limitations: Leaflet © 2010-2021 Vladimir Agafonkin: https:
//github.com/Leaflet/Leaflet/blob/master/LICENSE

– Pricing: Free

• OpenLayers

– Comments: –
– License & Limitations: –
– Pricing: Free

• Mapbox GL JS

– Comments: –
– License & Limitations: –
– Pricing: Map load = when Mapbox GL JS initializes. Tiers:

montly loads (ml) ≤ 50000: Free
50001 ≤ ml ≤ 100000: $ 5 per 1000 loads
100001 ≤ ml ≤ 200000: $ 4 per 1000 loads
200001 ≤ ml ≤ 1000000: $ 3 per 1000 loads
(for more monthly loads, the website does not name a price and requests to
contact sales)

51

https://github.com/Leaflet/Leaflet/blob/master/LICENSE
https://github.com/Leaflet/Leaflet/blob/master/LICENSE

A. Maps Licensing & Pricing List

• Google Maps

– Comments: currently used
– License & Limitations: –
– Pricing: Tiers:

First $ 200 worth of requests are free
Maps Static API: $ 2 per 1000 requests
Maps Embed API: Free
Maps JavaScript API: $ 7 per 1000 requests

A.2 Map Tiles

• Host own tiles

– Comments: Higher costs/efforts
– License: N/A
– Pricing: N/A
– Limitations: N/A

• OSM Carto

– Comments:
– License: Copyright: https://www.openstreetmap.org/copyright
– Pricing: Free / financed by donations
– Limitations: Heavy use forbidden without permission. OSM tile policies:
https://operations.osmfoundation.org/policies/tiles/

• Wikimedia Maps

– Comments: Some bugs visible on tiles
– License: OSM Copyright applies: https://www.openstreetmap.org/
copyright

– Pricing: Free / Wikimedia is financed by donations
– Limitations: https://foundation.wikimedia.org/wiki/Maps_Terms_
of_Use

• Thunderforest tiles

– Comments: Some cut off labels
– License:

52

https://www.openstreetmap.org/copyright
https://operations.osmfoundation.org/policies/tiles/
https://www.openstreetmap.org/copyright
https://www.openstreetmap.org/copyright
https://foundation.wikimedia.org/wiki/Maps_Terms_of_Use
https://foundation.wikimedia.org/wiki/Maps_Terms_of_Use

A.2. Map Tiles

– Pricing: Tiers:
150000 Tile Requests / Month (TRM): Free
1500000 TRM: £ 95 / M
15000000 TRM: £ 198 / M
150000000 TRM: £ 395 / M

– Limitations:

• Humanitarian Map Style

– Comments: –
– License: see https://www.openstreetmap.fr/open-data/
– Pricing: Free / Financed by donations
– Limitations: Hosted by OSM France, see license in url above

• wmflabs (WikiMedia Foundation Labs)

– Comments: Includes OSM and other tiles
– License: ?
– Pricing: ?
– Limitations: ?

• Stamen Maps

– Comments: Different map styles, some less conventional (Toner, Watercolor)
than others (Terrain)

– License: “Except otherwise noted, each of these map tile sets are ©Stamen
Design, under a Creative Commons Attribution (CC BY 3.0) license.”

– Pricing: Free / Financed by donations
– Limitations: –

• ÖPNVKarte / OpenBusMap

– Comments: Focusses on transit lines
– License: Tiles: CC BY-SA 2.0; Server: see Limitations
– Pricing: Tiles are free to use, servers are not (see limitations)
– Limitations: “Even though the map is available under an open licence, that

does not mean our server capacity can be used in your project. Especially
websites with a lot of traffic must be hosted on your own servers. If you need
help with that, I can provide you an offer.”

• Map1.eu

– Comments: Limited to Europe

53

https://www.openstreetmap.fr/open-data/

A. Maps Licensing & Pricing List

– License: CC BY-NC-ND 3.0

– Pricing: –

– Limitations: –

• OpenTopoMap

– Comments: –

– License: CC-BY-SA

– Pricing: Free / requires registration

– Limitations: https://opentopomap.org/about

• OpenMapSurfer

– Comments: Discontinued

– License: CC-BY 4.0

– Pricing: Free Plan for up to 20000 requests per day and 2000 requests per
minute

– Limitations: –

• MapTilesApi

– Comments: –

– License: OdbL

– Pricing: Free Plan for up to 10000 requests per day and 56 requests per second

– Limitations: –

• CARTO Maps

– Comments: –

– License: –

– Pricing: Limited use free for a year, see https://carto.com/pricing/
Individual: Limited access (50000 map loads per month, limited API access,
...) for $ 199 per month
Enterprise: Full access, cost not public.

– Limitations: ?

• Mapbox Maps

– Comments: –

– License: https://www.mapbox.com/pricing/

54

https://opentopomap.org/about
https://carto.com/pricing/
https://www.mapbox.com/pricing/

A.2. Map Tiles

– Pricing: Vecter Tiles API: free up to 200000 TRM
Static Tiles API: free up to 200000 TRM
Raster Tiles API: free up to 750000 TRM
Other APIs also available

– Limitations: ?

• Omniscale

– Comments: –
– License: –
– Pricing: No free plan - Volume-based and user-based pricing available

€ 29 per month (25 € if paid yearly)→ 250000 TRM and 10000 WMS requests
per month

– Limitations: “Nutzung auch für interne oder kostenpflichtige Anwendungen,
sowie für das Asset-Tracking”

55

APPENDIX B
Data Visualization

57

B. Data Visualization

Mean FPS - Left group: near polygons / right group: no polygons
Over both maps and both runs

Task 2 (Pan Bödele Schwarzach) vs. Task 3 (Pan Kops St. Anton)

Task 2 Task 3
0

20

40

60

F
P

S

Task 5 (Zoom Dornbirn) vs. Task 4 (Zoom St. Anton)

Task 5 Task 4
0

20

40

60

F
P

S

Task 7 (Zoom Dornbirn) vs. Task 6 (Zoom St. Anton)

Task 7 Task 6
0

10

20

30

40

F
P

S

Figure B.1: Mean FPS of “difficult” tasks vs. “easy” tasks

58

Median FPS - Left group: near polygons / right group: no polygons
Over both maps and both runs

Task 2 (Pan Bödele Schwarzach) vs. Task 3 (Pan Kops St. Anton)

Task 2 Task 3
0

20

40

60

F
P

S

Task 5 (Zoom Dornbirn) vs. Task 4 (Zoom St. Anton)

Task 5 Task 4
0

20

40

60

F
P

S

Task 7 (Zoom Dornbirn) vs. Task 6 (Zoom St. Anton)

Task 7 Task 6
0

20

40

60

F
P

S

Figure B.2: Median FPS of “difficult” tasks vs. “easy” tasks

59

B. Data Visualization

Ratio rbf(10) = Num. Frames with FPS < 10 : Num. Frames

Left group: near polygons / right group: no polygons
Over both maps and both runs

Task 2 (Pan Bödele Schwarzach) vs. Task 3 (Pan Kops St. Anton)

Task 2 Task 3
0

0.5

1

r bf
(1

0)

Task 5 (Zoom Dornbirn) vs. Task 4 (Zoom St. Anton)

Task 5 Task 4
0

0.5

1

r bf
(1

0)

Task 7 (Zoom Dornbirn) vs. Task 6 (Zoom St. Anton)

Task 7 Task 6
0

0.5

1

r bf
(1

0)

Figure B.3: rbf(10) of “difficult” tasks vs. “easy” tasks

60

Ratio rbf(30) = Num. Frames with FPS < 30 : Num. Frames

Left group: near polygons / right group: no polygons
Over both maps and both runs

Task 2 (Pan Bödele Schwarzach) vs. Task 3 (Pan Kops St. Anton)

Task 2 Task 3
0

0.5

1

r bf
(3

0)

Task 5 (Zoom Dornbirn) vs. Task 4 (Zoom St. Anton)

Task 5 Task 4
0

0.5

1

r bf
(3

0)

Task 7 (Zoom Dornbirn) vs. Task 6 (Zoom St. Anton)

Task 7 Task 6
0

0.5

1

r bf
(3

0)

Figure B.4: rbf(30) of “difficult” tasks vs. “easy” tasks

61

B. Data Visualization

Ratio rbf(60) = Num. Frames with FPS < 60 : Num. Frames

Left group: near polygons / right group: no polygons
Over both maps and both runs

Task 2 (Pan Bödele Schwarzach) vs. Task 3 (Pan Kops St. Anton)

Task 2 Task 3
0

0.5

1

r bf
(6

0)

Task 5 (Zoom Dornbirn) vs. Task 4 (Zoom St. Anton)

Task 5 Task 4
0

0.5

1

r bf
(6

0)

Task 7 (Zoom Dornbirn) vs. Task 6 (Zoom St. Anton)

Task 7 Task 6
0

0.5

1

r bf
(6

0)

Figure B.5: rbf(60) of “difficult” tasks vs. “easy” tasks

62

Frames sorted by FPS
Run 1: Google / Leaflet; Run 2: Google / Leaflet

0

200

400

Task 1

0

200

400

Task 2

0

500

1000
Task 3

0

200

400

600

Task 4

0

200

400

Task 5

0

200

400

Task 6

0

200

400

Task 7

0

100

200

300

Task 8

Figure B.6: FPS per task in ascending order.

63

B. Data Visualization

Frames sorted by FPS (clamped)
Run 1: Google / Leaflet; Run 2: Google / Leaflet

0

20

40

60

Task 1

0

20

40

60

Task 2

0

20

40

60

Task 3

0

20

40

60

Task 4

0

20

40

60

Task 5

0

20

40

60

Task 6

0

20

40

60

Task 7

0

20

40

60

Task 8

Figure B.7: FPS per task in ascending order, clamped to the range [0, 70]. This visualizes
the distribution over the different zones of FPS more clearly.

64

List of Figures

2.1 IÜG . 6
2.2 Umwelt Atlas . 7
2.3 NÖ Atlas . 8
2.4 FFRM Riskmap . 9
2.5 Grid data on the FFRM map in comparison to buildings in the background. 9

3.1 Screenshots of the Visdom desktop client. 12
3.2 Some of the different visualizations that are possible in Visdom. 13
3.3 The text view on the Visdom web client in comparison to the one on the

desktop client. 15
3.4 The table view on the Visdom web client in comparison to the one on the

desktop client. 17
3.5 Bigger web client window with the table view. 18
3.6 Paginator of the web clients table view. 18
3.7 Focussed number box “Go To Index” in the paginator. 19
3.8 Austria on both map engines running in the map view of the web client. . 19
3.9 Google Map mode of the map view with hill shading enabled. The polygons

rendered on top of the map are loaded from the shapefile vorarlberg-
Part.shp. The map view can render concave polygons with holes. . . . 20

4.1 The Material-UI Pagination control can be configured to look more like the
desktop clients paginator, by adding first and last page arrow buttons. . . 25

4.2 Material-UI TablePagination control. 25
4.3 Dimensions that are used in the calculation for how many rows fit on a table

page. 26
4.4 Map type selection dropdown box in the map view. 28
4.5 Example showing polygons and the bounds of a map view. If a polygon’s

bounding box does not intersect with the map, it is discarded. 29

5.1 Project file capitalsAt.visdom in Leaflet mode 32
5.2 Project file capitalsAtSimplified.visdom in Leaflet mode 33
5.3 Project file SyntheticSplitPolygon.visdom in Google mode 33
5.4 Project file floodPolygonsMap.visdom in Leaflet mode 34
5.5 ESRI Shapefiles . 36

65

B.1 Mean FPS of “difficult” tasks vs. “easy” tasks 58
B.2 Median FPS of “difficult” tasks vs. “easy” tasks 59
B.3 rbf(10) of “difficult” tasks vs. “easy” tasks 60
B.4 rbf(30) of “difficult” tasks vs. “easy” tasks 61
B.5 rbf(60) of “difficult” tasks vs. “easy” tasks 62
B.6 FPS per task in ascending order. 63
B.7 FPS per task in ascending order, clamped to the range [0, 70]. This visualizes

the distribution over the different zones of FPS more clearly. 64

66

List of Tables

5.1 Project files and ESRI Shapefiles, and the data they contain.. 31
5.2 Tasks within the manual test procedure to be done with both map types. 35
5.3 System Specifications of the machine for Testing. 39

6.1 Mean FPS per task per run rounded to two decimal places. Higher is better. 41
6.2 Median FPS per task per run rounded to two decimal places. Higher is better. 41
6.3 Mean FPS per task per map rounded to two decimal places. Higher is better. 42
6.4 Median FPS per task per map rounded to two decimal places. Higher is

better. 42
6.5 Mean FPS per task rounded to two decimal places. Higher is better. . . . 42
6.6 Median FPS per task rounded to two decimal places. Higher is better. . . 42
6.7 Mean FPS per map rounded to two decimal places. Higher is better. . . . 43
6.8 Median FPS per map rounded to two decimal places. Higher is better. . . 43
6.9 Bad Frame Ratios rbf(t) per task and run rounded to two decimal places. Ln

is short for the nth Leaflet run; Gn analogously for Google. Lower is better. 43
6.10 Bad Frame Ratios rbf(t) per task and map rounded to two decimal places.

Lower is better. 43

67

List of Algorithms

4.1 Finding the bounding box of a polygon 28

69

Literature

[Abf] Abflussvorhersagen der Hydrographie Österreichs, bmlrt.gv.at. https:
//www.bmlrt.gv.at/wasser/schutz_vor_naturgefahren/
hochwasserprognose/hw_prognose_at.html. Last accessed
2021.03.07.

[Ari] Ari Lerner. How To Write a Google Maps React Compo-
nent. https://www.newline.co/fullstack-react/articles/
how-to-write-a-google-maps-react-component/. Last accessed
2021.03.13.

[Bas] Basemap.at. https://basemap.at/. Last accessed 2021.03.13.

[Bay] Bayerisches Landesamt für Umwelt. Naturgefahren - Umweltat-
las. https://www.umweltatlas.bayern.de/mapapps/resources/
apps/umweltatlas/index.html?lang=de. Last accessed 2022.12.08.

[BL] Bundesministerium für Landwirtschaft, Regionen und Tourismus, Stubenring
1, 1012 Wien, Österreich and Land, Forst- und Wasserwirtschaftliches Rechen-
zentrum (LFRZ), Hintere Zollamtsstraße 4, 1030 Wien. eHORA - Natural
Hazard Overview & Risk Assessment Austria. https://hora.gv.at/.
Last accessed 2021.03.07.

[CEA07] CEA. Reducing the social and economic impact of climate change and natural
catastrophes–insurance solutions and public-private partnerships. 2007.

[Cen20] Centre for Research on the Epidemiology of Disasters - CRED. Natural
disasters 2019: Now is the time to not give up. 2020. https://cred.be/
sites/default/files/adsr_2019.pdf. Last accessed 2021.03.07.

[Chr] Chrome Developers. Analyze Runtime Performance - Chrome.
https://developer.chrome.com/docs/devtools/evaluate-
performance/. Last accessed 2022.09.08.

[CKS+15] D. Cornel, A. Konev, B. Sadransky, Z. Horváth, E. Gröller, and J. Waser.
Visualization of Object-Centered Vulnerability to Possible Flood Hazards.
Computer Graphics Forum, 34(3):331–340, June 2015. http://doi.wiley.
com/10.1111/cgf.12645.

71

https://www.bmlrt.gv.at/wasser/schutz_vor_naturgefahren/hochwasserprognose/hw_prognose_at.html
https://www.bmlrt.gv.at/wasser/schutz_vor_naturgefahren/hochwasserprognose/hw_prognose_at.html
https://www.bmlrt.gv.at/wasser/schutz_vor_naturgefahren/hochwasserprognose/hw_prognose_at.html
https://www.newline.co/fullstack-react/articles/how-to-write-a-google-maps-react-component/
https://www.newline.co/fullstack-react/articles/how-to-write-a-google-maps-react-component/
https://basemap.at/
https://www.umweltatlas.bayern.de/mapapps/resources/apps/umweltatlas/index.html?lang=de
https://www.umweltatlas.bayern.de/mapapps/resources/apps/umweltatlas/index.html?lang=de
https://hora.gv.at/
https://cred.be/sites/default/files/adsr_2019.pdf
https://cred.be/sites/default/files/adsr_2019.pdf
https://developer.chrome.com/docs/devtools/evaluate-performance/
https://developer.chrome.com/docs/devtools/evaluate-performance/
http://doi.wiley.com/10.1111/cgf.12645
http://doi.wiley.com/10.1111/cgf.12645

[CKS+16] D. Cornel, A. Konev, B. Sadransky, Z. Horváth, A. Brambilla, I. Viola, and
J. Waser. Composite Flow Maps. Computer Graphics Forum, 35(3):461–470,
June 2016. http://doi.wiley.com/10.1111/cgf.12922.

[Com] Composite Flow Maps. http://visdom.at/media/videos/mp4/
composite_flow_maps.mp4. Last accessed 2021.03.07.

[Cor20] D. Cornel. Interactive Visualization of Simulation Data for Geospatial Deci-
sion Support. PhD thesis, TU Wien, 2020.

[Dip] Dipl.-Ing. Günter Humer GmbH. FFRM Riskmap. https://ffrm.
hangwasser.at/. Last accessed 2022.09.05.

[Dir07] Directive 2007/60/EC of the European Parliament and of the Council of 23
October 2007 on the assessment and management of flood risks (Text with
EEA relevance). https://eur-lex.europa.eu/eli/dir/2007/60/
oj, October 2007. Last accessed 2021.03.07.

[dvA09] H. de Moel, J. van Alphen, and J. C. J. H. Aerts. Flood maps in Europe
– methods, availability and use. Natural Hazards and Earth System Sci-
ences, 9(2):289–301, March 2009. https://nhess.copernicus.org/
articles/9/289/2009/.

[Ene] Energie Steiermark. Niederösterreich Atlas. https://atlas.noe.
gv.at/webgisatlas/(S(pax0xifbgo1kieiosekl0zpz))/init.
aspx?karte=atlas_hochwasser&cms=atlas_wasser. Last accessed
2022.09.05.

[Fed18] Federal Ministry of Agriculture, Regions and Tourism - Kommunika-
tion und Service (Abteilung Präs. 5). Floods Directive (2007/60/EC).
https://www.bmlrt.gv.at/english/water/eu-international-
affairs/floods-directive-2007-60-ec.html, July 2018. Last
accessed 2021.03.07.

[Gooa] Google Maps. https://developers.google.com/maps/
documentation/javascript/overview. Last accessed 2021.03.13.

[Goob] Google-maps-react npm package. https://www.npmjs.com/package/
google-maps-react. Last accessed 2021.03.13.

[HW09] M. Hagemeier-Klose and K. Wagner. Evaluation of flood hazard maps in print
and web mapping services as information tools in flood risk communication.
Natural Hazards and Earth System Sciences, 9(2):563–574, April 2009. https:
//nhess.copernicus.org/articles/9/563/2009/.

[Int14] Intergovernmental Panel on Climate Change. Climate Change 2014 Impacts,
Adaptation, and Vulnerability Part A: Global and Sectoral Aspects Working

72

http://doi.wiley.com/10.1111/cgf.12922
http://visdom.at/media/videos/mp4/composite_flow_maps.mp4
http://visdom.at/media/videos/mp4/composite_flow_maps.mp4
https://ffrm.hangwasser.at/
https://ffrm.hangwasser.at/
https://eur-lex.europa.eu/eli/dir/2007/60/oj
https://eur-lex.europa.eu/eli/dir/2007/60/oj
https://nhess.copernicus.org/articles/9/289/2009/
https://nhess.copernicus.org/articles/9/289/2009/
https://atlas.noe.gv.at/webgisatlas/(S(pax0xifbgo1kieiosekl0zpz))/init. aspx?karte=atlas_hochwasser&cms=atlas_wasser
https://atlas.noe.gv.at/webgisatlas/(S(pax0xifbgo1kieiosekl0zpz))/init. aspx?karte=atlas_hochwasser&cms=atlas_wasser
https://atlas.noe.gv.at/webgisatlas/(S(pax0xifbgo1kieiosekl0zpz))/init. aspx?karte=atlas_hochwasser&cms=atlas_wasser
https://www.bmlrt.gv.at/english/water/eu-international-affairs/floods-directive-2007-60-ec.html
https://www.bmlrt.gv.at/english/water/eu-international-affairs/floods-directive-2007-60-ec.html
https://developers.google.com/maps/documentation/javascript/overview
https://developers.google.com/maps/documentation/javascript/overview
https://www.npmjs.com/package/google-maps-react
https://www.npmjs.com/package/google-maps-react
https://nhess.copernicus.org/articles/9/563/2009/
https://nhess.copernicus.org/articles/9/563/2009/

Group II Contribution to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change. Cambridge University Press, New York, NY, 2014.

[KNK+12] D. Komori, S. Nakamura, M. Kiguchi, A. Nishijima, D. Yamazaki, S. Suzuki,
A. Kawasaki, K. Oki, and T. Oki. Characteristics of the 2011 chao phraya
river flood in central thailand. Hydrological Research Letters, 6:41–46, 2012.

[KSD+19] K. Krösl, H. Steinlechner, J. Donabauer, D. Cornel, and J. Waser. Master of
disaster: Virtual-Reality Response Training in Disaster Management. Proceed-
ings of VRCAI 2019, 2019. https://www.vrvis.at/publications/
PB-VRVis-2019-040.

[Map] Mapbox. Mapbox gl js. https://www.mapbox.com/mapbox-gljs. Last
accessed 2022.12.08.

[Mata] Material-UI. https://material-ui.com/. Last accessed 2021.03.13.

[Matb] Material UI. React Pagination component - Material UI. https:
//mui.com/material-ui/react-pagination/#buttons. Last ac-
cessed 2022.09.08.

[Matc] Material UI. React Table component - Material UI. https://mui.com/
material-ui/react-table/#custom-pagination-options. Last
accessed 2022.09.08.

[mdn] mdn web docs. Frame rate - Firefox Developer Tools | MDN. https:
//developer.mozilla.org/en-US/docs/Glossary/FPS. Last ac-
cessed 2022.09.08.

[Npm] Npm. https://www.npmjs.com/. Last accessed 2021.03.13.

[Ope] OpenLayers. OpenLayers. (https://openlayers.org/). Last accessed
2022.12.08.

[Pea03] L. Pearce. Disaster Management and Community Planning, and Public
Participation: How to Achieve Sustainable Hazard Mitigation. Natural Haz-
ards, 28(2/3):211–228, 2003. http://link.springer.com/10.1023/A:
1022917721797.

[Reaa] React. https://reactjs.org/. Last accessed 2021.03.13.

[Reab] React Leaflet. https://react-leaflet.js.org/. Last accessed
2021.03.13.

[Reac] React Leaflet npm package. https://www.npmjs.com/package/
react-leaflet. Last accessed 2021.03.13.

[Read] React Measure. https://github.com/souporserious/react-
measure. Last accessed 2021.03.13.

73

https://www.vrvis.at/publications/PB-VRVis-2019-040
https://www.vrvis.at/publications/PB-VRVis-2019-040
https://www.mapbox.com/mapbox-gljs
https://material-ui.com/
https://mui.com/material-ui/react-pagination/#buttons
https://mui.com/material-ui/react-pagination/#buttons
https://mui.com/material-ui/react-table/#custom-pagination-options
https://mui.com/material-ui/react-table/#custom-pagination-options
https://developer.mozilla.org/en-US/docs/Glossary/FPS
https://developer.mozilla.org/en-US/docs/Glossary/FPS
https://www.npmjs.com/
(
http://link.springer.com/10.1023/A:1022917721797
http://link.springer.com/10.1023/A:1022917721797
https://reactjs.org/
https://react-leaflet.js.org/
https://www.npmjs.com/package/react-leaflet
https://www.npmjs.com/package/react-leaflet
https://github.com/souporserious/react-measure
https://github.com/souporserious/react-measure

[Red] Redux. https://redux.js.org/. Last accessed 2021.03.13.

[RH16] A. Reithofer and G. Humer. Flash Flood Risk Map Upper Austria -
Evaluierung Des Schadensrisikos Durch Starkregenereignisse Anhand Eines
Erweiterten 2D-Strömungsmodells. In AGIT - Journal Für Angewandte Geoin-
formatik, volume 2-2016 of AGIT - Journal Für Angewandte Geoinformatik,
pages 406–411, 2016-01-01, 2016. http://gispoint.de/fileadmin/
user_upload/paper_gis_open/AGIT_2016/537622055.pdf.

[Rot15] R. E. Roth. Interactivity and cartography: A contemporary perspective
on user interface and user experience design from geospatial professionals.
Cartographica: The International Journal for Geographic Information and
Geovisualization, 50(2):94–115, 2015.

[SMPF00] R. Sugumaran, J. Meyer, T. Prato, and C. Fulcher. Web-based decision
support tool for floodplain management using high-resolution DEM. Pho-
togrammetric engineering and remote sensing, 66(10):1261–1265, 2000.

[Sta] Stack Overflow. How to get the FPS in chrome devtools - Stack Overflow.
https://stackoverflow.com/a/48081289. Last accessed 2022.09.08.

[Typ] Typescript. https://www.typescriptlang.org/. Last accessed
2021.03.13.

[Vis] Visdom Szenarien simulieren und visualisieren. http://visdom.at/
media/pdf/visdom_flyer_dt.pdf. Last accessed 2021.03.07.

[Vla] Vladimir Agafonkin. Leaflet. https://github.com/Leaflet/
Leaflet/blob/master/LICENSE. Last accessed 2021.03.13.

[VRV] VRVis Zentrum für Virtual Reality und Visualisierung Forschungs-GmbH.
FLOODVISOR. http://visdom.at/projects/floodvisor/. Last
accessed 2021.03.07.

[W3C] W3C. Web Design and Applications - W3C. https://www.w3.org/
standards/webdesign/. Last accessed 2022.09.08.

[Was11] J. Waser. Visual Steering to Support Decision Making in Visdom. PhD
thesis, Technische Universität Wien, Vienna, May 2011. http://diglib.
eg.org/handle/10.2312/8274.

[WFR+10] J. Waser, R. Fuchs, H. Ribičič, B. Schindler, G. Blöschl, and E. Gröller.
World Lines. IEEE Transactions on Visualization and Computer Graph-
ics, 16(6):1458–1467, November 2010. http://ieeexplore.ieee.org/
document/5613487/.

74

https://redux.js.org/
http://gispoint.de/fileadmin/user_upload/paper_gis_open/AGIT_2016/537622055.pdf
http://gispoint.de/fileadmin/user_upload/paper_gis_open/AGIT_2016/537622055.pdf
https://stackoverflow.com/a/48081289
https://www.typescriptlang.org/
http://visdom.at/media/pdf/visdom_flyer_dt.pdf
http://visdom.at/media/pdf/visdom_flyer_dt.pdf
https://github.com/Leaflet/Leaflet/blob/master/LICENSE
https://github.com/Leaflet/Leaflet/blob/master/LICENSE
http://visdom.at/projects/floodvisor/
https://www.w3.org/standards/webdesign/
https://www.w3.org/standards/webdesign/
http://diglib.eg.org/handle/10.2312/8274
http://diglib.eg.org/handle/10.2312/8274
http://ieeexplore.ieee.org/document/5613487/
http://ieeexplore.ieee.org/document/5613487/

[WKC18] Jürgen Waser, Artem Konev, and Daniel Cornel. On-the-fly Decision Support
in Flood Management. GIM International, (November/December):22–25,
2018. Last accessed 2021.03.07.

[WRF+11] J. Waser, H. Ribicic, R. Fuchs, C. Hirsch, B. Schindler, G. Bloschl, and
M. Eduard Groller. Nodes on Ropes: A Comprehensive Data and Con-
trol Flow for Steering Ensemble Simulations. IEEE Transactions on Vi-
sualization and Computer Graphics, 17(12):1872–1881, December 2011.
http://ieeexplore.ieee.org/document/6064950/.

75

http://ieeexplore.ieee.org/document/6064950/

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Flood Maps
	Problem Statement

	Related Work
	Web-based Floodplain Advisory Tool
	Informationsdienst Überschwemmungsgefährdete Gebiete (IÜG)
	Umwelt Atlas Bayern
	Niederösterreich Atlas
	Flash Flood Risk Map for Upper Austria (FFRM)
	Lessons Learned

	Visdom Web Client
	Framework: Visdom System
	State of the Web Client

	Implementation
	Tools
	Implementation Steps

	Evaluation
	Data
	Test Procedure
	Cleaning the Data
	System Specifications
	Statistics and Visualization

	Results
	Conclusion
	Future Work
	Maps Licensing & Pricing List
	Map Engines
	Map Tiles

	Data Visualization
	List of Figures
	List of Tables
	List of Algorithms
	Literature

