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Kurzfassung

Technologische Fortschritte haben unsere Möglichkeit drastisch erweitert, Daten neu-
ronaler Konnektivität des Gehirns zu sammeln und sie im Bereich der Konnektomik
anzuwenden. Der Schwerpunkt der Forschung verlagert sich daher zunehmend auf die
Analyse dieser komplexen Daten. Viele Anwendungen visualisieren neurologische Daten im
dreidimensionalen Raum. Diese erfordern jedoch Interaktivität, um verdeckte Datenpunk-
te zu erkennen, und sind daher nicht immer anwendbar. Um die neurowissenschaftliche
Forschung in dieser Hinsicht zu unterstützen, stellen wir Spatial-Data-Driven Layouts
vor, ein neuartiges Web-Tool, welches sich der Visualisierung neuronaler Netzwerke
verschiedener Spezies im zweidimensionalen Raum widmet.

Unsere Methode ist datengesteuert und daher unabhängig von der Spezies oder der
Perspektive. Wir erstellen Node-Link-Diagramme, welche die Gehirnregionen als Kno-
ten darstellen und die Konnektivität durch die Kanten visualisieren. Für diesen da-
tengesteuerten Ansatz verwenden wir eine aus Hirnatlanten abgeleitete Konnektivität
(Parcellation-derived Connectivity) in Kombination mit einem Standard-Algorithmus für
kraftgesteuertes Graphenlayout.

Um die Orientierung zu erleichtern, wird die zugrunde liegende Gehirn-Hierarchie vi-
sualisiert. Farbige Parzellierungen im Hintergrund kapseln und gruppieren Knoten, die
gemeinsame Überregionen besitzen. Dieser Hintergrund ähnelt von der Form her dem
Gehirn und ist unabhängig von der Vollständigkeit des Netzwerks, wodurch der Ver-
gleich von Teilnetzen untereinander und mit dem gesamten Netzwerk erleichtert wird.
Der Detailgrad ist anpassbar, um entweder die anatomische Größe oder die Anzahl der
Verbindungen pro Region widerzuspiegeln.

Es wurden Fallstudien für zwei verschiedene Spezies, Mensch und Maus, durchgeführt,
um unsere Visualisierungen zu validieren und zu zeigen, dass die räumliche Verteilung der
Knoten die Anatomie des Gehirns widerspiegelt. Knoten, welche benachbarte Regionen
im Referenzraum darstellen, liegen auch in der Visualisierung nebeneinander.

Die von Spatial-Data-Driven Layouts gelieferten Ergebnisse wurden in einer web-basierten
Nutzerstudie evaluiert, an der Experten aus den Bereichen Neurowissenschaften, Informa-
tik, Bioinformatik und Computational Biology teilnahmen. Die Auswertung der Studien
für die zwei verschiedene Spezies Maus und Mensch zeigt, dass unsere Methodik daten-
basiert und Spezies-unabhängig angewendet werden kann. Das Feedback der Experten
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zeigt ein deutliches Potenzial. Spatial-Data-Driven Layouts stellt schnell und einfach
Abbildungen in der Literatur nach, die normalerweise mit viel Aufwand kreiert werden
müssen. Das Hinzufügen von Kontext in Teilnetzen, um die Gesamtform des Gehirns zu
erhalten und diese Netze miteinander vergleichbar zu machen, wurde als sehr nützlich
angesehen. Spatial-Data-Driven Layouts ist ein Novum in der Visualisierung neuronaler
Schaltkreise des Larvengehirns von Drosophila melanogaster und wird als ein erster guter
Schritt in diese Richtung angesehen.

Zukünftig wird geplant, die Anwendung mit Interaktivität zu erweitern, um Neurowis-
senschaftlern eine intuitive Darstellung ihrer Daten zu ermöglichen. Die Anpassung der
Gehirnregionen, der Konnektivität sowie der Details des Layouts kann über Parameter
an ihre Interessen angepasst werden. Darüber hinaus wollen wir die Visualisierung auf
Neuronenebene und die visuelle Kodierung der Graphen des Larven-Netzwerks verbessern,
um eine detaillierte Darstellung der neuronalen Schaltkreise zu ermöglichen.



Abstract

Technological advances have dramatically expanded our ability to collect data of neural
connectivity in the brain and apply this data in the field of connectomics. The focus of
research is thus increasingly shifting towards the analysis of this complex data. Many
applications visualize neurological data in three-dimensional space. However, these require
interactivity to view hidden data and are not always applicable. To support neuroscientific
research we present Spatial-Data-Driven Layouts, a novel web-tool to visualize neuronal
networks of multiple species in two-dimensional space. Our method is data-driven and is
therefore independent of species or perspective. We generate node-link diagrams where
nodes represent brain regions, while the edges correspond the connectivity. To realize
this data-driven approach we apply Parcellation-derived Connectivity, generated from
brain atlases in combination with a standard force-directed graph layout algorithm.
We provide further guidance by visually encoding anatomical context of the underlying
brain hierarchy. Colored parcellations in the background encapsulate and cluster nodes
that belong to the same super-regions. Additionally the background provides an overall
shape, similar to the brain and is independent of the graph’s completeness, facilitating
the comparison of sub-networks with each other as well as with the entire network. The
background is customizable in terms of anatomical details to reflect either the anatomical
size or the number of connections per region.

We conduct case studies for two species, mouse and human, to validate our visualizations
and show that the spatial distribution of nodes reflects the anatomy of the brain. Nodes
are adjacent to each other if they also represent neighboring regions in the reference
space.
The results provided by Spatial-Data-Driven Layouts are evaluated in a web-based user
study involving domain experts in neuroscience, computer science, computational science,
bioinformatics, and computational biology. Evaluating the studies for two different
species, mouse and human, shows that our methodology can be applied data-driven and
species-independent. The feedback obtained from the experts indicates clear potential.
Spatial-Data-Driven Layouts quickly and easily recreate illustrations in literature that
usually are created with a great deal of effort. Added context in sub-networks to preserve
the overall shape of the brain and to make those networks comparable to each other, was
considered very useful. Spatial-Data-Driven Layouts is a novelty in the visualization of
neuronal circuits of the Drosophila melanogaster larval brain and considered a first good
step in this direction.
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In the future, we plan to extend the application with interactivity to provide neuroscien-
tists with an intuitive representation of their data. The customization of brain regions,
connectivity, as well as details of the layout via parameters, can be adapted to their
interests. In addition, we aim to improve neuron-level visualization and visual encoding
of the Drosophila larval network graphs to provide a more detailed representation of
circuits.
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CHAPTER 1
Introduction

1.1 Motivation
The bottleneck for progress in most research areas within neuroscience has shifted from
the data acquisition to the data analysis stages [FGT+19]. Today’s technology provides
various ways to gather neuroscientific data that is difficult to fully analyze, due to
both their volume and complexity as most brains have millions of neural connections
within. Understanding and visualizing these networks is crucial for investigating cognition,
memory, and diseases of the brain. Studies, literature, and many others include figures
to show the results of experiments carried out or for educational purposes. Visualizations
of biological networks, like the brain connectivity, are ubiquitous and quickly provide
information [MPB+19]. This is where computer scientists come into play to develop
visualization tools that apply methods to convert extensive and complex data into easy
to analyze and interpret visualizations. However, creating a good visualization comes
with numerous challenges.

1.2 Problem Statement
One possibility to visualize neurological network data is to use abstract visualization
methods such as multidimensional scaling and scatter-plots [SSC+05]. These methods
lack anatomical context, which could provide neurobiologists with orientation. For this
purpose, a common way to visualize brain networks is a 3D node-link diagram, with
brain regions rendered as spheres and connections rendered as straight lines [XWH13],
[GSF+19]. A major issue with node-link visualizations is the visual clutter that occurs
when many edges and nodes overlap due to the flattening of the 3D structure onto a 2D
plane. Even though the occluded elements could be discovered via interactive navigation
in the 3D space, navigating costs time and is not always possible, as in printed media.
It becomes challenging to keep an overview of the global structure while visualizing a
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1. Introduction

high level of detail given a finite display area. The users often lose track of their current
position while navigating. Furthermore, most tools are trimmed to visualize data of
particular species as the networks vary by size and shape of their brains and their regions
[SBS+13].

1.3 Contributions
In this thesis we present Spatial-Data-Driven Layouts, a method to visualize neuronal
networks in 2-dimensional space. Specifically, following contributions are made:

• Data-driven anatomical layouts are presented that eliminate the need to man-
ually define brain region-related constraints. Their innovative features support
neurological networks of multiple species and perspectives.

• The methodology creates reproducible layouts for sub-networks and partial graphs.
While the visualization focuses on the partial network it still gives context of
the overall brain. This enables the users to keep their orientation and makes
visualizations of different parts of the brain comparable.

• Via an qualitative study it is proven that anatomical layouts allow neuroscientists
a faster overall understanding of 2D network graphs than with traditional network
visualization techniques. The author of this thesis designed the questions and tasks
of the user study. The study was conducted and evaluated by Florian Ganglberger
and Hsiang-Yun Wu.

1.4 Outline of the Thesis
In Chapter 2 we introduce the reader to the theoretical background that forms the basis
of this work. We provide an overview of the biological background with a focus on
neuroscience, including terminology and data underlying our work. We also describe
the basis of graph drawing, the importance of aesthetics, and how these can be satisfied
by means of layout techniques. Finally, we explain techniques of algorithmic geometry
applied in our work.
In Chapter 3 we first describe other work that forms the basis of techniques applied in
our approach. We then state examples of how neuronal data was visualized in previous
works and compare our work with previous approaches.
Chapter 4 describes the underlying data of our work. It includes the hierarchical brain
parcellation and the network to visualize.
Chapter 5 states the requirements that Spatial-Data-Driven Layouts need to fullfill. We
give an overview of our approach and proceed to describe each step in detail, including the
layout process, the visualization of parcellations, and giving context for partial networks.
Chapter 6 follows the steps of our methodology and describes the concrete implementation,
including the involved technology.

2



1.4. Outline of the Thesis

In Chapter 7 we describe the evaluation of Spatial-Data-Driven Layouts. This includes a
case study regarding the spatial arrangement of the brain network, a user study with
domain experts, and their feedback. We conclude with Chapter 8, which discusses the
problems as well as the potential of our work.
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CHAPTER 2
Background

This chapter presents the theoretical background that forms the basis for the thesis.
Selected aspects of neuroscience as well as methodologies of geometry relevant to our
work are introduced here. The first part focuses on the biological background. We explain
the relevant concepts of neuroscience by providing a brief introduction to biological
terminology, followed by a description of how neurobiological connectivity data is obtained.
In the second section of this chapter we explain graph drawing concepts, including
aesthetics and layouting algorithms. Finally, we state further methods of algorithmic
geometry that were applied in the course of our work.

2.1 Biological Background
To illustrate the contribution of this thesis we need to present the challenges that
neuroscience has to overcome.

2.1.1 Terminology
Neuroscience is the study of the nervous system. Brains as the central part of the
nervous system consist of a vast number of connected nerve cells or neurons. The average
number of neurons depends on the species and can be about 199,380 cells in a whole
adult brain of Drosophila melanogaster [RP21] or 86 billion neurons in the human brain
[ACG+09]. Neurons receive input via tree-like structures called dendrites and send signals
via long tubular structures called axons. Synapses are connections between neurons
through which information flows from one neuron to the next. The connectome is the
complete map of neural connections in the brain and may be thought of as its "wiring
diagram". Connectomics is the field of science that deals with the compilation, mapping,
and analysis of neural connectivity data. The study of connectomics aims to improve our
understanding of cognition and mental health by understanding how cells are connected

5



2. Background

Figure 2.1: Three anatomical planes are used to divide the nervous system to be able to
view internal regions and structures. ‘Anatomical Planes’ by Casey Henley is licensed
under a Creative Commons Attribution Non-Commercial Share-Alike (CC BY-NC-SA)
4.0 International License [ana].

in the nervous system. Brain parcellation defines specific areas in the brain, i.e., areas
or networks consisting of several discontinuous but closely connected regions, and is
fundamental for the understanding of the function and organization of the brain.

Spatial-Data-Driven Layouts projects these spatial structures of the brain onto a two-
dimensional plane. Since a plane is a 2D slice through 3D space, the anatomical planes
are different structures used to divide an anatomical body. Using those planes allows for

6



2.1. Biological Background

accurate description of a location. There are three commonly used planes (Figure 2.1):

• Coronal plane – a vertical plane which divides a body into a front (anterior) section
and back (posterior) section.

• Sagittal plane – a vertical plane which divides a body into a left section and a right
section.

• Transversal plane – a horizontal plane which divides a body into an upper (superior)
section and a lower (inferior) section.

We describe the viewing directions of our visualisations according to the planes. Here,
the sagittal perspective and transversal perspective are of particular relevance.

2.1.2 Data
Understanding the fundamental functioning and organization of the brain is one of the
greatest and most important challenges in neurobiology. In order to make progress
in research, not only is the acquisition of data crucial, but also the comprehension of
this diverse information plays a key role. The field of connectomics uses non-invasive
technologies, including resting-state and task-based fMRI, MEG, and EEG (function),
as well as diffusion morphometric imaging and tractography, to map brain networks
at the macroscopic scale to allow their analysis using graph theory [THZ+13]. The
resulting brain data is either non-spatial or spatial. Non-spatial data are for example
gene lists related to behavior or the functional association of genes. Spatial data can
include structural and functional connections, as well as brain-wide gene expressions.
Spatial-Data-Driven Layouts focuses on the visualization of spatial data to provide its
anatomical context.
Data collections provided by different brain initiatives, as the Allen Institute [All], the
Human Brain Project [hum], and the larvalbrain platform [lar], form the basis for our
tool. Such atlases exist for various species, e.g., the mouse (Figure 2.2), the human
(Figure 2.2), and the Drosophila melanogaster larvae (Figure 2.4). They are essential
for research and education by annotating organs and creating coherence by defining a
nomenclature. The Allen Brain Connectivity Atlases [All, DRS+16] are freely available,
foundational resources for structural and functional investigations into the neural circuits
that support behavioral and cognitive processes in health and disease. They include a
hierarchical definition of the brain regions and parcellations as well as the connectivity.

For data acquisition Enhanced Green Fluorescent Protein (EGFP) is utilized to track
axonal projections from specific regions and cell types. High-throughput serial two-
photon tomography is used to image EGFP-labelled axons throughout the brain. This
systematic and standardised approach enables spatial registration of the individual
experiments in a common three-dimensional reference space and ultimately generates the
connectivity matrix of the whole brain [OHN+14]. One example for such a connectivity
is the resting-state fMRI, which measures spontaneous low-frequency fluctuations in the

7
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2.1. Biological Background

Figure 2.3: Atlas of the human brain from the coronal perspective [All].
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2. Background

Figure 2.4: Atlas of the D. melanogaster larval brain from the transversal perspective
[lar].
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2.2. Graph Drawing

blood-oxygen-level–dependent signal to investigate the functional architecture of the
brain [SBA+13].

The brain atlases are available for a variety of species. Like the species themselves,
their brains come in a variety of shapes and sizes. Figure 2.5 displays this differences
in brain volume scale. The nematode Caenorhabditis elegans is one of the simplest
organisms with a nervous system and is as such an important model organism. Its system
comprises a total of 302 neurons and has been comprehensively mapped. Its connectome
is comparatively simple and has shown to be a small-world network [WS98].
The brain of an adult fruit fly Drosophila melanogaster is broader, consisting of about
199,380 cells [RP21]. D. melanogaster is one of the most studied organisms in biological
research, particularly in genetics and developmental biology. It breeds and matures
quickly as females lay up to 400 eggs every 16 days and the development from egg
to an adult takes only several days. Keeping and breeding these insects is thus very
cost-effective. Genetic modification and experiments are fairly simple which led to a good
annotation of its genome.
Another longstanding model organism for human biology and disease is the mouse because
of its relative phylogenetic similarity and physiological closeness to the human species.
Similar to the fruit fly it is fairly cost-efficient to breed and keep in a laboratory. The
total number of neurons in the entire mouse brain was determined to be around 70 million
[HHML06]. The human brain includes 86 billion neurons [ACG+09]. It also has about
the same number of non-neuronal cells, such as the oligodendrocytes, which insulate
neuronal axons with a myelin sheath. The data we use for the human brain is provided
by the Human Brain Project [hum]. It proposes a new approach that uses supercomputer
technology to integrate existing biological knowledge into multilevel brain models. More
details about our data can be found in Chapter 4.

2.2 Graph Drawing
This work aims to depict diverse brain networks in the form of graphs. Graph drawing
derives two-dimensional representations of graphs and networks and is motivated by
applications where it is crucial to visualize structural information. It combines mathe-
matics and computer science with methods from geometric graph theory and information
visualization. In the following section we explain the basic terminology related to graph
theory and graph drawing. Following this, we introduce the reader to the theoretical
basis of graph layouting, in particular to the force-directed layouting technique that is
relevant to our methodology.

2.2.1 Terminology
A drawing of a graph or network is represented by vertices and edges. Directed graphs
have edges with a direction. The edges indicate a one-way relationship in that each edge
can only be traversed in a single direction. In contrast, undirected graphs have edges
with no direction. The edges indicate a two-way relationship and can be traversed in
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Figure
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2.3. Algorithmic Geometry

both ways. For simplicity, we will use the terms nodes/vertices and edges/connections as
well as network/graph interchangeably.

2.2.2 Layouting
The drawing of a graph should not be confused with the graph itself as the same graph
can be drawn in different layouts. Even though graph drawing is an important subfield
of information visualization, making a ‘good’ drawing becomes more difficult for large
and densely-connected graphs. Assuming edges are drawn as straight-line segments, the
main goal of graph drawing is assigning appropriate coordinates to graph nodes. This
operation is known as graph layouting. The arrangement of nodes and edges is decisive
for how comprehensibly information can be perceived by the user. Aesthetic criteria
typically refer to the number of crossings of edges, even distribution of nodes, and a
similar length of edges.

There are many different graph-layouting strategies, e.g. force-directed methods [Ead84,
FR91], dimensionality-reduction methods [KRM+17, Kru80], and spectral methods
[Hal70, BP06]. We focus on force-directed algorithms in this thesis, which are applied
in Spatial-Data-Driven Layouts. Fundamentally, they simulate repulsive and attractive
forces between a graph’s nodes. Kobourov [Kob13] described them as follows:

"In general, force-directed methods define an objective function which maps
each graph layout into a number in R+ representing the energy of the layout.
This function is defined in such a way that low energies correspond to layouts
in which adjacent nodes are near some pre-specified distance from each other,
and in which non-adjacent nodes are well-spaced. A layout for a graph is then
calculated by finding a (often local) minimum of this objective function."

The nodes are assumed to have a certain "electrical charge" and as the edges work as
"springs" with a predefined desired length, force-directed algorithms are also known
as spring embedders (see Figure 2.6). Force-directed layouts are widely used and very
popular as they provide good-quality results, flexibility, simplicity, are intuitive, and have
strong theoretical foundations.

2.3 Algorithmic Geometry
The Voronoi Diagram and the convex hull are essential concepts in computational
geometry. We apply these two techniques for the visualization of brain parcellations. The
following two sections give a theoretical overview of these concepts.

2.3.1 Voronoi Diagram
The Voronoi diagram (also known as Voronoi tessellation, Voronoi decomposition, or
Voronoi partition) was formally introduced by the mathematicians Dirichlet and Voronoi
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2. Background

Figure 2.6: Illustration of a generic spring embedder: Starting from random positions of
the nodes, the edges are treated as springs [Kob12].

[LD50, Vor08]. A Voronoi diagram is a partition of a plane into regions close to each
of a given set of objects (see Figure 2.7(a)). In the simplest case, these objects are just
finitely many points in the plane (called seeds, sites, or generators). For each seed there
is a corresponding region, called a Voronoi cell, consisting of all points of the plane closer
to that seed than to any other seed. Points that are exactly the same distance away
from two seeds form a line called the Voronoi line. It forms the boundary between two
Voronoi cells. A point that is equidistant from three or more seeds is therefore located on
the boundary between a corresponding number of Voronoi cells and is called a Voronoi
vertex.
Voronoi diagrams are applied in a variety of domains. One of the most prominent examples
is the early work of Snow [Sno55] who applied Voronoi tessellation to trace the source
of a cholera outbreak in Soho, London, in 1854. He contained the disease by removing
the handle of a water pump. Numerous natural sciences apply Voronoi tessellations. In
medicine Voronoi tesselations are applied to understand tissue architecture in development
and disease [SGTB+16]. In ecology they are used to study the growth patterns of forests
and forest canopies. Meteorologists apply them for verification of precipitation forecasts
[KLH18].

2.3.2 Convex Hull

The convex hull (also convex envelope or convex closure) of a set of points in the
Euclidean plane is the smallest convex set that contains the points (see Figure 2.7(b)).
For a bounded subset of the plane the convex hull can be thought of as the shape enclosed
by a rubber band stretched around the subset. It can be defined in two ways: as the set
of all convex combinations of points in the subset or as the intersection of all convex sets
containing a given subset of a Euclidean space.
Many solutions have been proposed to calculate the convex hull, such as Graham’s Scan
[Gra72], Jarvis’s March [Jar73], and Chan’s algorithm [Cha96]. The convex hull has been
used in a multitude of scientific fields, especially computer graphics, for applications
to find bounding volumes [NW18], pattern matching [DPB+14, GS85], and analysis of
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(a) Voronoi diagram (b) Convex Hull

(c) Duality between Voronoi diagram and convex hull

Figure 2.7: Example of a Voronoi diagram (a) and a convex hull (b). Both techniques
are closely related as the duality between Voronoi diagram and convex hull (c) shows
[HPS16].

spectrometry data [SPD+17].

Many problems can be reduced to the convex hull problem, including the Voronoi diagram.
The Voronoi diagram and the convex hull interrelate with each other as follows: Assume
the setting is the Euclidean plane and a group of different points is given. Then two
points are adjacent on the convex hull if and only if their Voronoi cells share an infinitely
long side (see Figure 2.7(c)).
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CHAPTER 3
State of the Art

In this chapter we present related work to put this thesis into a bigger context. We first
focus on aspects of graph visualization that are crucial for our results. Subsequently, we
present state-of-the-art tools for visualization in neuroscience and compare existing tools
with Spatial-Data-Driven Layouts.

3.1 2D Graph Visualization
We introduce the importance of aesthetics and explain how force-directed layouts have
been used in previous works to satisfy the rules of aesthetics. Furthermore we provide an
overview of works that applied hierarchical graph visualization and edge bundling.

3.1.1 Aesthetics
The aim of graph visualization is to create "good" graph drawings. Methodological
works that present rules or heuristics for the creation of understandable, aesthetically
pleasing graphs, and network figures provide guidelines how to overcome certain issues
[BRSG07], [MPB+19]. Several early papers on graph drawing discussed the requirements
[TDBB88, STT81]. Tamassia et al. [TDBB88] for example wrote the following:

"Aesthetics: We use the term aesthetics to denote the criteria that concern
certain aspects of readability. A well-admitted aesthetics, valid independently
from the graphic standard, is the minimisation of crossings between edges.
Also, in order to avoid unnecessary waste of space, it is usual to keep the area
occupied by the drawing reasonably small. When the grid standard is adopted,
it is meaningful to minimize the number of bends (turns) along the edges, as
well as their total length."
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As we can see, aesthetics are not applied to graph drawing in a purely aesthetic sense
- it has the practical aim of revealing underlying structures and meaning. Research
has led to numerous aesthetic heuristics for drawing graphs. These efforts have been
extended to empirically evaluate the effectiveness of these heuristics and to investigate
their underlying basis in perceptual processing. Bennett et al. [BRSG07] conducted
a survey on visualization heuristics regarding node placement, edge placement, graph
layout, and domain-specific heuristics. Balancing potentially conflicting heuristics is an
ongoing challenge. The usefulness of traditional quality metrics, such as the number of
edge crossings, is recently doubted in the context of increasingly large graphs derived
from various application areas including biology [EHNK17].
Understanding why certain data visualization techniques work better than others has
psychological roots. Gestalt psychology suggests that human perception does not focus
on every small component. Instead, it tends to perceive objects as part of a greater whole,
complex system. The principles of grouping are a set of Gestalt principles. They teach us
that the spatial arrangement of nodes and edges influences the reader’s perception of the
network information — even if there is no underlying meaning. Thus, the right layout can
effectively enhance features and relations of interest, while the wrong layout could easily
lead to misinterpretation. Marai et al. [MPB+19] propose ten simple rules for creating
biological network figures. One of the rules points to unintended spatial interpretations
that result from the Gestalt principles. Figure 3.1 shows an example. Both graphs
represent the same regions of the normalized structural mouse brain connectivity data
[MPB+19] as nodes. They apply the same force-directed layouting algorithm. Figure
(a) uses connectivity strength as the driving force, positioning strongly connected nodes
closely together, but neglecting the spatial context of the network. Figure (b) applies the
spatial relation of brain regions resulting in a "flattened" mouse brain with symmetry
and spatial positions approximately reproduced. Further rules by Marai et al. [MPB+19]
cover aspects of the layout, applying color or other channels to show attributes, and the
use of layering and separation.

The importance of the graph shape is also expressed in the work of Eades et al. [EHNK17].
They proposed a new set of quality metrics for graph drawing for larger graphs. Those
shape-based metrics state that a drawing is good if the shape of the set of vertex positions
is similar to the original graph.

3.1.2 Force-directed Layouts
The purpose of force-directed methods is to place nodes based on their relative positions
without overlaps. We have already given an overview of the idea and the functionality of
these methods in Section 2.2.2.

Force-directed methods in graph drawing emerged first in the work of Tutte in 1963
[Tut63]. He showed that polyhedral graphs can be drawn in the plane with all faces
convex. After fixing the vertices of the outer face of a planar embedding of the graph into
convex positions, he placed a spring-like attractive force on each edge and let the system
settle into an equilibrium. A force-directed technique for drawing general graphs was first
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(a)

(b)

Figure 3.1: Graphs representing mouse brain connectivity data applying a force-directed
layouting algorithm. Figure (a) uses connectivity strength as the driving force. Figure
(b) applies the spatial relation of brain regions [MPB+19].
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(a) (b)

Figure 3.2: CoSE Layout applied to a graph (a) without and (b) with compound nodes.

published by Eades as a spring-embedder in 1984 [Ead84]. The method of Fruchterman
and Reingold [FR91] from 1991 is based on Eades work and is used or extended in a
significant number of subsequent studies. New variants of force-directed algorithms for
drawing graphs are still introduced every year. More recent implementations focus on
scalability or can handle large dynamic graphs.

The open-source network analysis and visualization software package Gephi implements
ForceAtlas2 [JVHB14] as default layouting algorithm. ForceAtlas2 is a force-directed lay-
out integrating different techniques such as the Barnes Hut simulation, degree-dependent
repulsive force, and local and global adaptive temperatures. Another algorithm is CoSE
(Compound Spring Embedder), a spring embedder layout developed by i-Vis Lab at the
Bilkent University [DGC+09] (see Figure 3.2). It is based on the force-directed layout
algorithm of Fruchterman and Reingold [FR91] and additionally handles the following:

• an arbitrary level of nesting

• inter-graph edges that may span multiple levels of nesting

• links to non-leaf nodes in the nesting hierarchy

The CoSE algorithm forms an important part of the methodology of our work.

Due to their property to present graphs organically and aesthetically pleasing, force-
directed layouts are applied in numerous tools and frameworks of different domains.
FORCE, a layout-based heuristic, handles huge data sets of prokaryotic protein sequences
to calculate clusters [WBLR07]. It applies the layout algorithm by Fruchterman and
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Reingold [FR91] to partition the data. GMap [GHK10] is another tool that applies
the layout algorithm by Fruchterman and Reingold. It visualizes relational data with
geographic-like maps. Its implementation couples the layout algorithm with a modularity-
based clustering algorithm. Additionally it applies Voronoi diagrams with randomly
placed points to recreate map-like boundaries.

3.1.3 Hierarchical Graph Visualization
Compound graphs have been used in the past to represent more complex data structures,
which incorporate additional information on relationships, like hierarchy or clusters.
Compared to the general graph layout, considerably less work on the layout of compound
graphs has been done, probably due to the complex nature of this problem. Simple
approaches in a top-down or bottom-up manner fail due to bidirectional dependencies
between levels of varying depth.
Sugiyama and Misue [SM95] implemented D-Abductor, a generic compound graph
visualizer and manipulator, to support human thought processes. It provides sophisticated
techniques for visualizing and manipulating graphs using compound graphs and automatic
graph drawing described in a preceding work by Sugiyama and Misue [SM91].
Several papers deal with the visualization of pathways using compounds. For example,
Fukuda ad Takagi [FT01] describe a signal transduction-pathway representation-model
that is based on a compound graph structure. It is designed to handle the diversity and
hierarchical structure of pathways. Patika [DGC+04] is an analysis tool for drawing
complicated biological pathways (Figure 3.3). It allows for arbitrary nesting relations to
represent molecular complexes and pathway abstractions applying the CoSE algorithm
[DGC+09].
Another tool that applies force-directed layout on hierarchical graphs is Chisio, a free,
open-source compound graph editing and layout framework [KDBD17]. It comes with a
variety of graph layout algorithms, most supporting compound structures, and further
algorithms can be easily imported. It serves as a test environment for layout algorithm
developers.

3.1.4 Edge Bundling
Edge bundling was first introduced by Holten [Hol06] to reduce visual clutter in hierar-
chical graphs and was later extended to non-hierarchical graphs using a self-organizing
force-directed approach, where edges are modeled as flexible springs that can attract
each other. The resulting bundled graphs show significant clutter reduction and vis-
ible high-level edge patterns as seen in Figure 3.4. Geometry-based Edge Clustering
is introduced by Cui et al. [CZQ+08]. They convert general straight-line graphs into
road-map-style graphs by clustering the edges based on a control mesh that reflects
the underlying graph structures. They also apply force-directed layouting of nodes to
decrease the number of edge crossings and thus reduce visual clutter. Wu et al. [WYY15]
presented texture-based edge bundling. It uses textures to encode information about lines
and forces and utilizes shaders to conduct an iterative line refinement on the GPU to
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3. State of the Art

further improve the performance of force-directed edge bundling. Hurter et al. [HET12]
described a cost-efficient method by transforming a given graph drawing into a density
map using kernel density estimation. They further applied an image sharpening technique
to merge local height maxima by moving the convolved graph edges into the height
gradient flow. The framework CUBu [VDZCT16] is fully GPU-based. It extends and
unifies existing bundling techniques to accelerate edge bundling while offering ways to
control bundle shapes, separate bundles by edge direction, and shade bundles to create a
level-of-detail visualization.
An example of edge bundling in connection with visualizing a neurological network is given
by McGraw [McG15]. He partitions the connectivity matrix into blocks corresponding to
brain hemispheres and bundles the graph edges to generate intuitive visualizations to
allow investigation on multiple scales (Figure 3.5).

3.2 Related Work in Neuroscience
A very good introduction to connectomics and recent developments is given by Seung
[Seu12], who also highlights the advances in high-throughput, high-resolution electronic
imaging. Lichtman and Denk [LD11] describe the challenges in achieving the ultimate
goal of connectomics - understanding the relationship between function and structure in
the brain. Visualizing such networks is a crucial part to accomplish this goal.

In this section we first describe the sources of data collection. We provide an overview of
the various graphical representations of neuronal networks in prior works. Finally, we
present some tools and frameworks that enable the visual representation of such networks.
We analyze these approaches to delimit them from Spatial-Data-Driven Layouts

3.2.1 Visualization in Neuroscience
To visualize brain connectivity data, prior works used abstract, non-spatial approaches
or spatial approaches, which take the anatomy of brain regions into account.

Non-spatial Visualization

Non-spatial visualization includes multidimensional scaling, spring embedding, matrix
bitmaps, and scatter-plots. These methods aim at identifying structural clusters in
the data. An example of such an approach is the work by Deshpande et al. [DSH11]
visualizing the functional connectivity as a 2D spring embedded graph using the Kamada-
Kawai algorithm [KK+89]. Stefanovski et al. [STS+19] represent structural connectivity
using a matrix as a proof of concept to compare the simulated activity of altered
molecular pathways concerning neuronal population dynamics (Figure 3.6). Baedea et
al. [BWS+19] identified vulnerable brain circuits in mouse models with homozygous
targeted replacement of the mouse gene with one of two types of human gene alleles
concerned with age and disease-associated challenges. Using tensor-network principal-
component-analysis for structural connectomes they inferred the pairwise connections
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3.2. Related Work in Neuroscience

(a)

(b)

Figure 3.5: Visualization of a human brain network using node-link diagram combined
with edge bundling [McG15]. (a) Intrahemispherical connectivity. (b) Interhemispherical
connectivity. Nodes representing lobes are colorcoded and connectivity weights are
represented by edge thickness.
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that best separate the two carriers. They visualized the outcome as scatter-plot of the
top principal components (Figure 3.7). These analyses revealed not just genotype, but
also sex-specific differences. Raredon et al. [RYG+21] present Connectome, a software
package for R that facilitates rapid calculation and interactive exploration of cell-cell
signaling network topologies contained in single-cell RNA-sequencing data. It allows to
display the data as a connectogram (Figure 3.8(a)). Huang et al. [HZZ+20] analyzed and
compared the difference in metabolic brain network connectivity among four different
age groups from childhood to adolescence. They showed that the topological properties
and modular reorganization of the human brain network dramatically changed with age.
In an alluvial diagram they illustrate changes in modular assignments of metabolic brain
networks across the four groups, where each block represents a module and each line
corresponds to a brain region (Figure 3.8(b)).

Spatial Visualization

Spatial techniques such as 3D node-link diagrams help neuroscientists to orient themselves
by providing anatomy as well as inspecting the structural patterns. However, these
techniques often lead to occluded or scattered visualization. Several approaches have
been adopted in the past to solve this problem. McGraw [McG15] integrated spatial
relations and anatomical meaning into an abstract visualization directly while avoiding
occlusions and clutter at the same time. They positioned the nodes of the graph
using the automated anatomical labeling (AAL) brain atlas, discarding one of the three
coordinates (Figure 3.5). The nodes are grouped by the hemisphere (left, right) and
their corresponding brain lobes. Minimizing the overlap is achieved by using the method
described by Misue et al. [MELS95]. The color of a node is determined by the lobe it
belongs to, while the radius is proportional to the number of incident edges of the node.
Edges are filtered and bundled in a similar approach as described by Holten and Van
Wijk [HVW09]. Visualization of inter- and intra-hemispheric connectivity is separated to
reduce clutter in inter-hemispheric connectivity.
Tymofiyeva et al. [THZ+13] studied structural brain networks in subjects of different ages,
including premature neonates, term-born neonates, six-month-old infants, and adults.
They visualized the comparison via anatomic MRI images, tractograms reconstructed
based on DTI data, and binary connectivity matrices. Furthermore, they provided a
figure from a network-driven segmentation of the cortex into five modules with a similar
pattern for subjects from all age groups (Figure 3.9(c)).

3.2.2 Interactive Exploration Tools
In order to cope with the complex field of connectomics, numerous tools have been
developed in recent years. An example is BrainNet Viewer [XWH13], a graph-theoretical
network visualization toolbox to illustrate macro-scale human brain networks as ball-and-
stick models (Figure 3.9(a)). It displays combinations of the brain surface, nodes, and
edges from multiple perspectives (sagittal, axial, or coronal), and allows the user to adjust
display properties like color and size of the network elements. A more abstract approach
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Figure 3.6: Adjacency matrix showing the connections weights of a human connectome
[STS+19].
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Figure 3.7: Scatter-plot of the top two principal components of a mouse connectome
analysis [BWS+19].

is proposed by Jianu et al. [JDL12]. They developed a two-dimensional, representation
of axonal tracts of the human brain as tractograms (Figure 3.9(b)). Their visualization
is distributed in a traditional stand-alone interactive application and as a web-accessible
system. The interactive exploration system facilitates exploration and analysis of brain
connectivity with preservation of anatomical context in mind.
The vast resources of brain data, including the relationship between genes, brain circuitry,
and behavior, require time-consuming manual aggregation of the data. Several tools
handle this issue using queries. Beyer et al. [BAAK+13] presented ConnectomeExplorer,
an application for the interactive exploration and query-guided visual analysis of large
volumetric connectomic data sets. The query algebra allows neuroscientists to pose
domain-specific questions intuitively and to interactively analyze the results. Another
data structure is proposed by Ganglberger et al. [GKP+18]. Their Aggregation Queries -
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(a)

(b)

Figure 3.8: (a) Connectogramm, a circular representations of brain connectomics
[RYG+21]. (b) Alluvial diagram representing changes in network structure over time
[HZZ+20].
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the aggregated connectivity from, to, or between brain areas - allow experts the comparison
of multimodal networks at different levels of hierarchically organized anatomical atlases.
Aggregation Queries are available in BrainTrawler [GKHB20, GSF+19], a novel task-
driven web-framework that incorporates visual analytics methods to explore heterogeneous
neurobiological data, including their spatial context. It is the first tool that enables to
explore of the genetic and functional characteristics of microcircuits in real-time.

The combination of abstract and spatial approaches preserves the mental map of the
neuroscientists and allows them to investigate whether a network topology interacts
with the spatial domain. A tool that provides both approaches is Brain Modulyzer
[MBB+16], an interactive visualization tool to analyze the correlation between different
brain regions when resting or when performing mental tasks. It provides a view for
each approach. Anatomical views display spatial information by coloring brain regions
based on their correlation strength. Abstract views are used for analyzing patterns in
the underlying correlation data while removing anatomical context. InTool [FGT+19]
is a web-based tool which provides a user-designed canvas for data visualization and
interaction to perform specific exploratory tasks. It permits visualization of the data sets
in a dynamic and versatile way using a linked-card approach. Predefined card types offer
abstract data representations, a filtering tool, or a set of statistical analysis methods.
Another tool is NeuroMap [SBS+13]. It visualizes the brain of the common fruit fly D.
melanogaster (see Figure 3.10). It renders an interactive two-dimensional graph of the
fruit fly’s brain and its interconnections in the form of a circuit-style wiring diagram.
Anatomical context is provided by partitioning the canvas into compartments that form
an abstract representation of actual brain regions. NeuroCave [KZC+17] supports group
studies analyses, which are of relevance to examine differences between populations or
changes over time within a population. It applies immersive visualization, hierarchical
clustering, and dimensionality reduction techniques.

3.2.3 Conclusion
Most previous approaches for visualizing brain connectivity suffer from clutter or loss of
anatomical context, while others require multiple views to combine relevant information.
Spatial anatomical networks can be visualized as graphs. A simple 3D projection leads to
occlusion of nodes, which can be solved in several ways. McGraw’s work [McG15] reduces
clutter near the midline by representing interhemispheric connectivity separately, resulting
in multiple figures. This makes it difficult for the user to see the spatial relationship
between the figures. NeuroMap provides solutions to problems such as clutter or loss
of anatomical context, but the anatomical layout is created manually. Adaptations to
visualize data from other species require extensive reprogramming. This would be very
time consuming since each species has a unique hierarchical brain parcellation. Another
problem concerning the parcellation is the level of granularity within the hierarchy.

In our work we focus on shape-based metrics [EHNK17] as traditional metrics like edge-
crossing minimization are not feasible in large, spatial networks. Shape-based metrics
state that a drawing is good if the shape created by the vertex positions is similar to the
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original graph. The idea of remaining similar to the original graph is naturally essential
for spatial layouts. We visualize brain networks in a data-driven manner to reuse the code
base for connectivity data from different species (e.g., human, mouse). Our methodology
could also be applied in other domains that require graph-based visualizations with
spatial context.
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CHAPTER 4
Data

To provide a better understanding of our methodology and implementation we start with
the description of the data. For loading and visualizing such neuroscientific data we use
a specific data format, including naming conventions. The information about the brain
hierarchy and the connectivities comes in the form of a human-readable JSON format.
Brain regions are labeled by denoting their hemisphere with "R" for right or "L" for left,
followed by "_" and an abbreviation of the name as used in the Allen Brain Atlas [All],
e.g., L_OLF for left Olfactory areas or R_STR for right Striatum.

To visualize brain networks our tool requires the following two data sets:

• Hierarchical Brain Parcellation: It represents the overall information of the
species-specific hierarchical partitions of a standard brain. For each region it
includes the ID, name, and abbreviation of the name, as well as color, 3D position
coordinates, and the volume as voxel count. The hierarchy is organized in a tree-
structure. The complete brain represents the top level of the hierarchy, which is
subdivided into its sub-regions. This results in each region having a field containing
a list of its sub-regions. The data is derived from brain reference atlases, specifically
from the Allen Mouse Brain Common Coordinate Framework [WDL+20] for the
mouse brain, the Allen Human Reference Atlas [DRS+16] for the human brain, and
the larval brain platform [lar] for the D. melanogaster larval brain. A scheme of
the Hierarchical Representation of Brain Regions comprising the higher hierarchy
levels of the Allen Mouse Brain Common Coordinate Framework can be seen in
Figure 2.2.

• Brain Network: This data set contains specific information of the network
that should be visualized. It encodes brain regions that are rendered as nodes
in the resulting graph. We refer to them as Network Regions or Network Nodes.
Furthermore it encodes connectivity among those regions. Connections are directed
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and contain a reference to the ID of their source region and target region, as denoted
in the Hierarchical Brain Parcellation. Each connection is weighted and has a type.
We distinguish between two connectivity types: Parcellation-derived Connectivity
and Rendered Connectivity. The Brain Network data includes connectivities of
both types for the same set of Network Regions.

– Rendered Connectivity contains the brain network that should be visualized.
It represents, for example, structural, functional, or genetic networks.

– Parcellation-derived Connectivity represents the closeness of brain regions in
the anatomical reference space and is used to lay out the graph. Ganglberger
[GSF+19] derived this measure from the parcellation of brain regions on a 3D
reference space using two different methods:

∗ Neighborhood: Calculates the number of neighbouring voxels (6-connectivity)
between brain regions across all hierarchy levels. The measure is nor-
malized by the total number of voxels of the two brain regions, since
otherwise the measure would depend directly on the size of the regions.
The localized nature of this connectivity (only neighbouring brain regions
are connected) enables graph layouts that retain these local structural
relationships between brain regions.

∗ Reciprocal Distance: Calculates the reciprocal distance between region
centers. It is an approximation which can be used if no parcellation is
available but yields inferior results.
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CHAPTER 5
Methodology

This chapter explains our methodological approach. Section 5.1 describes the require-
ments that our work has to fulfill. Section 5.2 gives an overview of the individual
methodological steps that are carried out to meet the requirements. The remaining
sections of this chapter describe these steps in detail.

5.1 Requirements
Based on a long-term collaboration with neuroscientists working on neural networks of
humans, mice, and D. melanogaster the following requirements for a method to create
Spatial-Data-Driven Layouts of brain networks have been collectively established together
with Ganglberger [GWW+22]:

R1 Anatomically sound The positioning of the regions in the graph should reflect
the anatomical layout, i.e., neighbouring regions of the brain should be represented
adjacent in the visualisation.

R2 Data-driven The vast number of connections and regions within a brain make
manual arrangement of data unfeasible. Our tool should be able to handle data in
an automatic and data-driven way.

R3 Species-independent Each species has a unique brain parcellation and brain
structure that our tool should be able to display regardless of the differences.

R4 Perspective-independent Different perspectives, e.g., transversal (from top) and
sagittal (from the side) should be supported and stay comparable by maintaining the
user’s orientation.

R5 Providing anatomical context The final visualization should provide sufficient
context to facilitate the anatomical localization of a brain network.
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R6 Adaptable with regards to anatomical detail It should be possible to highlight
the anatomical detail of the graph according to information density, i.e., show more
anatomical detail for highly connected regions or networks with more than one node
per region exceeding the resolution of the hierarchical parcellation, or by the region’s
anatomical size, i.e., anatomical detail is evenly distributed over regions with equal
size.

R7 Consistent in spatial organization with respect to changes The layouting
should be stable concerning changes in the selection of visualized network nodes
and brain regions, and therefore, the mental map of the neuroscientist should be
retained.

R8 Overlap-efficient Overlap of nodes and edges should be minimized.

5.2 Approach
When visualizing three-dimensional structures on a two-dimensional surface, we often
struggle with obscuring information that we need to represent. The main idea is to
use the Parcellation-derived Connectivity that describes the anatomical proximity of
each brain region to layout our network. With this approach we can find a layout
that reduces the overlap of nodes and achieves a uniform distribution of nodes while
preserving the anatomical relationships. After laying out the nodes, the Parcellation-
derived Connectivity is exchanged for the connections of the Rendered Connectivity. For
further visual guidance we underlay the nodes with a colored background representing
their associated parcellation.
The following approach was developed together with Ganglberger and is also described
in our work [GWW+22]:

Step 1: Preprocessing We start by loading and preprocessing the required data. This
includes the hierarchical parcellation, the Rendered Connectivity, and the Parcellation-
derived Connectivity, which will be used in later steps to lay out a brain network. Details
about the data are described in Chapter 4. Missing regions in the hierarchy can be taken
into account.

Step 2: 3D Projection To position the nodes on the plane, two of the three coordinates
of their location are selected, depending on the desired perspective (sagittal or transversal)
(R4).

Step 3: Providing Context Partial networks can be difficult to compare as they
lack common parts. To make all networks comparable and simplify orientation, it is
possible to add further context to the partial networks (R5, R7). Partial networks can
be extended by further nodes, which we refer to as Context Nodes. These nodes are not
visualized themselves but are later included in the background described in Step 5.

Step 4: Layouting This step is crucial for the final result as the Network Nodes and
Context Nodes of the graph are positioned. This positioning should reflect the anatomical
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(a) Step 1

(b) Step 2 (c) Step 3

Figure 5.1: Principal steps to generate Spatial-Data-Driven Layouts. (a) Step 1: Prepro-
cessing. (b) Step 2: 3D projection (here: transversal perspective). (c) Step 3: Providing
context (gray nodes). Figure by Ganglberger et al. [GWW+22].
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(d) Step 4a

(e) Step 4b

Figure 5.1: Principal steps to generate Spatial-Data-Driven Layouts (cont.). Step 4 -
Layouting. (d) Anatomical Layout using Parcellation-derived Connectivity, (e) Aesthetic
Layout using triangulation. Figure by Ganglberger et al. [GWW+22].
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(f) Step 5

(g) Step 6

Figure 5.1: Principal steps to generate Spatial-Data-Driven Layouts (cont.). (f) Step 5 -
Parcellation Background. (g) Step 6 - Network Rendering. Figure by Ganglberger et al.
[GWW+22].

41



5. Methodology

spatial localization of the brain regions as accurately as possible and comply with the
aesthetic rules (R1, R8). The graph nodes are arranged based on the Parcellation-derived
Connectivity, which reflects the anatomical proximity of brain regions using a force-
directed layouting algorithm. We call this layout Anatomical Layout. In some cases,
another layout step using the Delaunay triangulation called Aesthetic Layout is applied
to achieve an even node distribution. The layout process is applicable to multiple data
sets and species (R2, R3).

Step 5: Parcellation Background Nodes representing sub-regions of the same par-
cellation should be visually clustered. The parcellations are displayed as colored planes,
which surround the corresponding nodes. The idea is to facilitate the orientation of the
user. The user can control the level of detail of the parcellation (R6).

Step 6: Connectivity This final step renders the edges representing the Rendered
Connectivity. A set of different edge visualization techniques is applicable.

A visual representation of the approach is seen in Figure 5.1. In the following sections
each step is described in detail.

5.3 Preprocessing
First, we load our input data as described in Chapter 4 depending on the species. Nodes
encode the brain regions, containing information like the regions’ name and color. Edges
encode the connectivity, including the reference to the source and target nodes, and are
weighted. The anatomical connection used for layouting is derived from the Parcellation-
derived Connectivity.

Some brain atlases provide unbalanced regions, i.e., corresponding regions of the left and
right brain hemispheres are not pairwise available. In this case, the user can decide how
to handle such regions having the following possibilities:

• Add as node: The missing counterpart of the region is included in the network as
node.

• Add as context: The missing counterpart of the region is included in the Parcellation
Background.

• Remove: The node which has a missing counterpart is removed from the network.

• Ignore: The network stays as it is.

Ignoring unbalanced regions may naturally lead to an asymmetric appearance of the
graph, which is especially visible in the transversal view. An example is given in Figure
5.2.
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(a) Add as node (b) Add as context

(c) Remove (d) Ignore

Figure 5.2: Different options for unbalanced Network Regions displayed on a mouse
brain network with 78 regions from the transversal perspective. 10 regions from the left
isocortex (light green) and six from the left olfactory regions (olive) were removed.
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5.4 3D Projection and Anatomical planes
Our application allows to view the network from either the transversal perspective or
sagittal perspective (R4). Each region has a 3D coordinate. Based on the desired
perspective we select two dimensions (e.g., x- and y-coordinate or y- and z-coordinate) of
each region’s 3D position to place a node representing the region on the canvas.
From the transversal perspective the two hemispheres are visualized next to each other.
In the sagittal perspective nodes that represent corresponding regions of the left and
right hemisphere overlap due to the symmetry of the brain (Figure 5.3(a)). To solve this
issue we set the two-dimensional coordinate of the position of each node belonging to the
right hemisphere to the one of the left side and shift it diagonally by a fixed distance.
An advantage of this approach is that two related nodes are evenly distributed and their
affiliation is quickly recognized by the viewer.

5.5 Layouting
The Parcellation-derived Connectivity represents the local closeness of regions. Applying
a force-directed layout algorithm with this connectivity leads to an ordering of nodes
that reflects the anatomical and spatial structure of the brain (R1, R7). Another benefit
of force-directed layouting is the minimization of node overlap resulting from the 3D
projection of the brain network (R8).
Rippberger provided preliminary work for our use case in her bachelor thesis [Rip19].
She evaluated multiple layouting algorithms for graph data concerning properties like
symmetry, node overlapping, and anatomical resemblance. The goal of her work was to
find an algorithm that regenerates the anatomical structure of the brain visualized without
any hard-coded constraints. A user study was conducted to evaluate how the resulting
graphs were perceived regarding symmetry, anatomical layout, reproducibility, and
visual traceability. Several different selections of regions were tested. The force-directed
layouting algorithm by Dogrusoz et al. [DGC+09] called CoSE-Bilkent (Compound Spring
Embedder) outperformed the other tested algorithms regarding all properties. Figure 5.4
shows two results generated by Rippberger using the CoSE-Bilkent algorithm. Based
on Rippbergers findings, we use the CoSE-Bilkent algorithm that supports compound
graphs (nested structures) and varying (non-uniform) node dimensions. Since it accounts
for the initial positions of the nodes, it also leads to stable results. We now expand on
the work of Rippberger.

5.5.1 Parameters

Depending on the specific algorithm and its implementation, force-directed layout algo-
rithms provide a variety of parameters the user can specify to control the applied forces
and influence the results. Force-directed layout algorithms reflect forces in a physical
system with edges acting as springs and nodes holding electrical charges. Therefore, the
parameters usually represent, among other things, node repulsion, spring or edge length,
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(a)

(b)

Figure 5.3: Effects of compound nodes on a network of a mouse brain with 90 regions
from the sagittal perspective. In both figures the layout algorithm is run first, followed
by a shift to align left and right region pairs to each other. (a) Result without compound
nodes. This leads to overlap of several nodes. (b) Regions of left and right hemisphere
encapsulated in a compound node (black boxes).
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and edge elasticity. Effects of these parameters can be seen in Figure 5.5. We denote
forces as strong if the effect of the force-directed layout changes the result significantly,
i.e., changing the spatial adjacency of the Network Nodes or changing the overall shape of
the graph (see the example where edge elasticity is set to ten in Figure 5.5). Otherwise,
we denote forces as weak.

CoSE-Bilkent provides a set of parameters the user can customize to adjust the forces
and the resulting layout of the graph. As it is a spring-embedder it simulates the graph
as a system of mass particles and tries to minimize the energy of this physical system.
The edges act as springs and the nodes hold electrical charges. The following parameters
reflect forces in this physical system and are relevant for meeting the requirements of our
work:

• NodeRepulsion - represents the electrical charge of a node. The higher the value
is, the stronger the repulsion between the nodes. A typical effect of increasing the
node repulsion is an upscaling of the drawing.

• EdgeElasticity - represents the spring’s stiffness. This factor is used to determine
how strongly edges pull and push at the nodes they connect.

• IdealEdgeLength - represents the natural length of non-nested edges, i.e., edges
not contained in a compound node. If nodes are connected by an edge, one can
treat the edge as a spring that has a natural length. If the nodes are nearer than
this length, they are push apart if they are farther away than the length, they are
pulled together.

• InitialEnergyOnIncremental - represents the reciprocal cooling factor for the incre-
mental layout. The cooling factor helps in controlling how layouts evolve over time.
A small positive cooling factor reduces the movement of nodes quickly or abruptly,
while a large cooling factor allows for a smoother step by step layout refinement
at the cost of more iterations. As the InitialEnergyOnIncremental is its reciprocal
value, a small value creates the smoother step by step layout refinement.

• Gravity - represents a general force field in the center that pulls nodes together, so
that nodes are not too loosely scattered.

• GravityRange - represents the range of the gravity. compounds.

A fitting set of parameters was heuristically evaluated. For a more efficient testing
setup we applied sliders to change individual parameters within reasonable boundaries.
The boundaries were roughly defined between a value that produced hardly noticeable
differences and a second value that already strongly distorted the layout.
Overall, the parameters NodeRepulsion and IdealEdgeLength control the distance between
the nodes. Increasing those values generates a larger empty area around the nodes
and improves the visual quality. The strongest effect has the EdgeElasticity. The
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Figure 5.5: The effects of changing the layout parameters. The left most figure shows
the reference case. On the right side one of the values was changed in each case. In the
top row the node repulsion was changed, in the middle row the ideal edge length was
modified, and in the bottom row the effects of changing the edge elasticity can be seen.

48



5.5. Layouting

increase of its value pulls regions with strong connections of the Parcellation-derived
Connectivity together. We concluded that high values help to reach an anatomically
correct neighborhood of regions but also create node overlaps and alter the shape of the
brain as seen in Figure 5.5. Hence, we evaluated the smallest value for the EdgeElasticity
parameter, that still creates an anatomically correct neighborhood of regions. The effect
of the parameters most relevant to us can be seen in Figure 5.5.

Our approach applies the CoSE-Bilkent algorithm twice with different sets of parameters
and connections. We therefore distinguish between two layouts:

• Anatomical Layout: This is the main layout step. It should produce the anatomical
representation as accurately as possible after the 3D projection. Neighboring brain
regions should also be adjacent in the graph as nodes. A view that resembles a
cross-section is desired (e.g., Figure 2.2 - 2.4).

• Aesthetic Layout: Depending on the shape and density of regions in the brain,
network forces of the Anatomical Layout have to be strong enough to pull nodes of
neighboring regions together, while repelling nodes of regions which are not adjacent.
Such strong forces, however, can lead to overlaps during the positioning of the
nodes. We apply weak forces on a connectivity, that represents the triangulation of
the Network Nodes to resolve overlaps without changing the without changing the
spatial adjacency of the Network Nodes that results from the Anatomical Layout.

In the following paragraphs we describe the layouts in more detail.

5.5.2 Anatomical Layout
Using sliders, we manipulated the values of each parameter as previously described to
observe the effects. We tried to reproduce the subjectively best results, i.e., reflecting
the spatial anatomy of the brain. The results were evaluated under the supervision of
Florian Ganglberger. We quickly realized, that for different characteristics a distinct set
of parameters had to be determined. Depending on the perspective and the species a
varying number of overlap occurs due to the overall size and shape of the brain network
and its density of nodes. By observation we can provide some guidance how to choose
which parameter set in which case.
The parameters for the D. melanogaster larval brain need to be set to low values,
to maintain the shape. Weak forces in the algorithm are sufficient in this case to
layout the graph, such that it reflects the anatomical and spatial structure of the brain
and avoids node overlap. Gravity was set to a low value for the D. melanogaster
larval brain network since the brain has a long, T-like shape (see Figure 2.4), which is
distorted by the force field that pulls peripheral nodes towards the center. The parameter
InitialEnergyOnIncremental is set to a low value to keep the graph stable.
Dense brain structures, like the human brain or the mouse brain from sagittal perspective,
require strong forces to reach an anatomically correct neighborhood of regions, i.e., to
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pull nodes of anatomically adjacent regions together and to repel those that are further
apart. This can be achieved by setting a higher value for the InitialEnergyOnIncremental
or the EdgeElasticity parameter for the mouse and human networks compared to the
one for the networks of D. melanogaster. An example is shown in Figure 5.6(a). In the
sagittal perspective of the mouse brain network the peripheral regions of the cerebral
cortex (green) as well as the pallidum (purple) are placed in-between the central regions,
thalamus (bright red), and hypothalamus (red) due to simple mapping of 3D to 2D.
In this case it is desirable to see the nodes positioned similar to a cross-section (see
Figure 2.3), where the sub-regions of the cortex are positioned in the periphery of the
brain. This requires stronger forces in the layout algorithm. This is achieved by increasing
the value for the EdgeElasticity. For this reason the forces of the algorithm have to be
adjusted accordingly.
The CoSE-Bilkent algorithm we use for layouting does not take into account the weighting
of each connection. This means that even insignificant connections are given equal
consideration in the layout. To compensate for this shortcoming we decided to filter the
Parcellation-derived Connectivity to include only the four strongest outgoing connections
for each node. This value was determined heuristically.

5.5.3 Aesthetic Layout
A challenge with dense networks is that regions that are neighbors should be pulled
together, while peripheral regions should be pulled away. Applying strong forces resolves
this issue. However, one problem that occurs if forces are too strong is that the distribution
of the nodes is uneven, eventually leading to overlaps (see Figure 5.7(a)). Our solution
for this problem is to introduce another layout step. We denote this step as Aesthetic
Layout as its aim is to satisfy the aesthetic heuristics of evenly distributing nodes and
minimizing node overlap to improve readability and understanding. To achieve an even
distribution of nodes while maintaining the spatial relationship of the nodes the Aesthetic
Layout requires a set of edges connecting nodes that have the shortest distance to each
other, as these are most likely to be affected by overlaps. The Delaunay triangulation
satisfies this property. We calculate the triangulation for the Network Nodes and use it
to layout the graph once more with a set of parameters creating weak forces. Due to the
properties of the Delaunay triangulation, the spatial anatomy of the brain created by
the Anatomical Layout is preserved, while an even distribution of the nodes to minimize
the overlaps is amplified (Figure 5.7(b)). The Aesthetic Layout can be repeated multiple
times. Running a high number of iterations or applying strong forces in the Aesthetic
Layout approximates the shape of the graph to a disc. We heuristically evaluated that
three iterations for dense networks, i.e., mouse and human brain networks, are sufficient
to reach an even node distribution and to reduce node overlaps, while preserving the
shape of the brain. For networks of the D. melanogaster larval brain we do not apply
the Aesthetic Layout at all. As mentioned in Section 5.5.2 this brain does not require
strong forces in the Anatomical Layout, resulting in satisfactory results concerning node
overlaps and distribution. Furthermore, running the Anatomical Layout distorts the
distinct shape of the D. melanogaster larval brain.
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(a)

(b)

Figure 5.6: (a) Weak parameters for the layouting algorithm are set (EdgeElasticity =
0.01). The hypothalamus (red) and thalamus (bright red) should be positioned next to to
each other, but are separated by the pallidum (purple) and the peripheral cortex regions
(green). (b) A three times higher value for the parameter (EdgeElasticity = 0.03) shifts
the neighbouring regions towards each other.
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(a)

(b)

Figure 5.7: Effects of the Aesthetic Layout on a sagittal projected network of the mouse
brain with 104 regions. (a) The network after running the Anatomical Layout. Overlaps of
nodes are marked by black arrows. (b) The network after running the Anatomical Layout,
followed by iterating the Aesthetic Layout three times. The overlaps are eliminated.
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(a) Transversal perspective (b) Sagittal perspective

Figure 5.8: Layouting steps of the mouse brain network from transversal and sagittal
perspectives. The first row shows the simple projection from the 3D data to the 2D
plane with Parcellation-derived Connectivity. The second row shows the result after
applying the Anatomical Layout with Parcellation-derived Connectivity. The third row
depicts the result after applying the Aesthetic Layout using triangulation. Finally, the
last row represents the result after exchanging the triangulation edges with the Rendered
Connectivity.
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Finally, Figure 5.8 shows the layouting steps on a network of a mouse brain for the
transversal and sagittal perspective. The parameters for the Anatomical Layout are found
in the Appendix for networks of the mouse, human, and D. melanogaster larval brains
from transversal and sagittal perspective. The parameters for the Aesthetic Layout are
also listed in the Appendix. They are not dependent on the species or perspective.

5.5.4 Compounds
The force-directed layout algorithm CoSE-Bilkent supports compound nodes. The
compounds are crucial to group corresponding nodes of the left and right hemisphere in
the sagittal perspective, as described in Section 5.4. Running the force-directed layout
algorithm would change the new position and we would lose the even distribution of the
corresponding left and right Network Nodes. Running the layouting algorithm first and
then shifting would possibly create new overlaps of nodes (Figure 5.3(a)). To overcome
this issue we use the compound nodes to encapsulate the left and right node of each
region. The compound nodes are taken into account by the CoSE-Bilkent algorithm,
such that overlaps of compound nodes, including their contained Network Nodes, are
reduced and the shifted positions of theNetwork Nodes are preserved (Figure 5.3(b)).
The final result is a balanced appearance, which helps the users to orientate themselves
with minimized overlap. The fine-tuning can be done using parameters CoSE-Bilkent
specifically provides for compound nodes:

• NestingFactor - represents the ideal edge length for nested edges, i.e., that are
contained in a compound node.

• GravityCompound - represents the gravity for compounds.

• GravityRangeCompound - represents the range of the gravity for compounds.

5.6 Context
Neuroscientists may want to visualize only a specific part of the brain. Such sub-networks
often lack connections to the entire brain. This makes it difficult to classify their
spatial position and relationship. The user can display other regions as context to
facilitate comparison between sub-networks (R5). The idea is to embed information in
the visualization by positioning regions not contained in the sub-network in the graph
without rendering them as nodes. Instead, they are included in the layout process and
the Parcellation Background, serving as orientation without obscuring the view of the
network. We refer to these nodes as Context Nodes. The user can control the number
and display of context by adjusting two parameters (R6):

• Context Ratio: A numeric variable to adjust the amount of context in relation
to the number of Network Nodes (see Figure 5.9). A value of r will generate a
background including r times as many Context Nodes as Network Nodes, i.e. setting
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(a) ratio = 0 (b) ratio = 1 (c) ratio = 2

(d) ratio = 0 (e) ratio = 4 (f) ratio = 6

(g) ratio = 0 (h) ratio = 0.5 (i) ratio = 1

Figure 5.9: Examples of different context ratios for sub-networks. (a)-(c) display a
network of a mouse brain, (d)-(f) display a network of a human brain and (g)-(f) show a
network of the fruit-fly larval-brain.
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this parameter to 0 will only layout and use Network Nodes without further context.
Setting this parameter to 1 will include as many Context Nodes as Network Nodes.

• Gray-scale: A boolean variable to control the coloring of the Context Regions. The
user can decide if they want the Context Regions depicted in colors corresponding
to the Allen Brain Atlas or in gray-scale, to keep the focus on the network.

The pseudocode CalculateContextRegions (Algorithm 5.1) describes the main routine to
calculate the Context Regions. The basic idea of the algorithm is to calculate a set of
Context Regions C of the size corresponding to the Context Ratio r. The Context Regions
are not part of the sub-network that is being visualized. The value n is the number of
Context Regions the algorithm calculates and is based on the Context Ratio r. As the
brain is symmetric we recursively calculate a number of nl Context Regions of the left
hemisphere, denoted as Cl. The corresponding regions of the right hemisphere Cr are
added afterwards.
The recursive sub-procedure to find the Context Regions of the left hemisphere Cl is
described by the pseudocode CalculateLeftContextRegions (Algorithm 5.2). The main
idea is to replace the anatomically largest regions with their sub-regions until the size of
Cl reaches nl.
To achieve this, the parcellations in Cl are sorted by their size in descending order to set
their priority. Starting with the largest parcellation we exclude the Network Nodes N from
its sub-regions SC. If there are no subregions left the algorithm continues with the next
region in Cl. We calculate the updated size of the Context Node n′

l if the parcellation c is
exchanged with its subregions SC. If n′

l exceeds nl then only the largest subregions are
kept in the set, such that exactly nl regions in Cl are reached after the exchange. Finally
the parent is replaced by its subregions SC in the set Cl. The algorithm recurses with

Algorithm 5.1: CalculateContextRegions
input : An integer r representing the ratio,

a list N containing Network Regions,
a map B containing the brain hierarchy.

output : A list C containing the context regions.
1 n ← |N| ∗ r;
2 nl ← ⌊n

2 ⌋;
3 if nl ≤ 0 then
4 return ∅;
5 end
6 Cl ← CalculateLeftContextRegions(nl, N, B.subregions[0]) ;

// B.subregions[0] represents the left hemisphere
7 Cr ← GetRegionsFromOppositeHemisphere(Cl);
8 C ← Cl ∪ Cr;
9 return C;
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Algorithm 5.2: CalculateLeftContextRegions
input : An integer nl representing the number of left Context Regions,

a list N containing Network Regions,
a list Cl containing the left Context Regions.

output : A list Cl containing the context regions.
1 if |Cl| ≥ nl then
2 return Cl;
3 end
4 sort Cl by size;
5 foreach c ∈ Cl do
6 SC ← c.subregions;
7 SC ← SC\N ; // Remove Network Regions from context
8 if SC = ∅ then
9 continue;

10 end
11 n′

l ← |SC| + |Cl| − 1 ;
12 if n′

l > nl then
13 m ← nl − |Cl| + 1;
14 SC ← get m largest regions in SC;
15 end
16 Cl ← Cl\{c};
17 Cl ← Cl ∪ SC;
18 return CalculateLeftContextRegions(nl, N, Cl);
19 end
20 return Cl;

the updated Cl. The sub-routine terminates in two cases: (1) The size of Cl corresponds
nl or (2) the regions in Cl have no more subregions, excluding Network Regions. The
Gray-scale parameter is later considered while drawing the Parcellation Background (see
Section 5.7).
After calculating the Context Regions, additional connections in-between Context Regions
as well as connections between Context and Network Regions are added to the Parcellation-
Derived Connectivity. By this, the layout algorithm also takes the Context Nodes into
account, which leads to a more natural appearance of the resulting layout than if the
nodes are not considered by the algorithm.

5.7 Parcellation
The networks our tool visualizes are based on the hierarchical anatomy of brain parcel-
lations. Brain parcellations define distinct partitions in the brain, that cover multiple
discontinuous but closely interacting regions. We apply distinct colors to distinguish
between different parcellations. The coloration is derived from the Allen Brain Atlas
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and assigns colors based on their hierarchical position in the brain. Closely related
parcellations can be identified by similar color. Sub-regions are encoded with the same
hue but with lighter saturation then their parent regions. Sibling regions further down
the hierarchy have a similar and sometimes the same color. Figure 5.10 gives an overview
of regions of the mouse brain and their assigned colors.
To represent this spatial information and allow the user an easier orientation, we integrate
the parcellation in the background of the graph (R6, R7). We denote this background as
Parcellation Background. This background additionally illustrates the overall shape of
the brain. The background is created by applying a Voronoi tessellation to visually group
nodes that belong to the same parcellation by color [WNV20]. The Voronoi cells are
assigned the color of the parcellation, that the region of the node belongs to. To keep the
network and the nodes in the focus, the colors of the Voronoi cells in the background are
lightened. The Parcellation Background is also used to visualize the context described in
Section 5.6 (R5).
To give the user more control over the visualization of the Parcellation Background two
parameters can be adapted:

• Color Count: Represents the number of colors and thus corresponds to the number
of visualized parcellations for granularity.

• Priority: To select the number of regions corresponding to the Color Count we
traverse the brain hierarchy and split parcellations into their sub-regions. The
algorithm can prioritize, which of these sub-regions should be divided first:

– Anatomy-driven: Largest regions are divided first.
– Importance-driven: Regions with the highest count of edges are divided first.

The effects of these parameters are displayed in Figure 5.11. The main goal of the
algorithm is to find a set of parcellations that covers all Network and Context Regions.
This means that each Network and Context Region has a super-region along the brain
hierarchy contained in the set of parcellations or is contained in the set itself. The
calculation of the parcellations works similar to the algorithm calculating the Context
Regions (Algorithm 5.1 and 5.2). Again, the algorithm consists of a main routine
(Algorithm 5.3) calculating a set of parcellations of the left hemisphere Pl in a recursive
sub-routine (Algorithm 5.4). The set Pl is then joined with corresponding parcellations
of the right hemisphere Pr for the final set of parcellations P .
There are four main differences to the algorithm calculating the Context Regions: (1) The
focus of the Parcellation Background, that visualizes the parcellations lies on the color
coding. The Color Count col is used instead of calculating a ratio. This time, not the size
of the calculated set is considered. Instead the amount of distinct colors represented by
the parcellations in P is checked. Since corresponding regions of the two hemispheres are
assigned to the same color, we do not have to halve col. (2) The second difference is that
the parcellations Pl in the recursive sub-routine CalculateLeftParcellations (Algorithm 5.4)
are sorted depending on the Priority parameter pr. They are either prioritized by their
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(a) Color Count set to six (left) and 40 (right) in a mouse brain network.

(b) Priority set to importance-driven (left) and anatomy-driven (right) in a mouse brain network.
Color Count set to 16 in both figures.

Figure 5.11: Effects of different (a) Color Counts and (b) Priorities. Figure by Gan-
glberger et al. [GWW+22].
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anatomical size or by the number of their connections. (3) As the aim is to find
parcellations that cover the Network and Context Regions along the hierarchy no regions
further down the hierarchy should be selected. The algorithm does not traverse further
down the hierarchy if a region contained in set R is reached. (4) If the updated number
of colors col′, i.e., after the exchange of the parent with its sub-regions, exceeds col then
we do not calculate a subset of the sub-region SP as in Algorithm 5.2, but continue with
the next region in Pl. A subset of SP would possibly not cover all the Network and
Context Regions. The sub-routine again terminates if the amount of distinct colors in Pl

corresponds col or if the regions in Pl have no more subregions that are neither Network
Regions nor Context Regions. If the Color Count col is higher then the sum of colors of
all Network and Context Regions combined, we reach the second case of termination. The
set P results in the combined set of Network or Context Regions. Hence, each Voronoi
cell of a Network and Context Node in the Parcellation Background is assigned the color
of the region itself. An example can be seen in Figure 5.11(a) on the right.

After we calculated the set of parcellations P we visualize them in the background of the
graph. The background should reflect the anatomy and the shape of the brain abstractly
and highlight the relationship between the nodes and the parcellation they belong to.
The approach to create such a Parcellation Background is to calculate a Voronoi diagram
using Network Nodes as Voronoi cells for the parcellations. The context for partial
networks as described in Section 5.6 is incorporated by including the Context Nodes
in this calculation. Points along the convex hull of the nodes are incorporated in the
Voronoi calculation to approximate the shape of the brain.
Our approach is as follows: We create a set of nodes S including the Network Nodes and
Context Nodes. The nodes in S are used to calculate the convex hull. By definition the
cells of the Voronoi diagram that are calculated by points lying on the boundary of the
convex hull create infinite surfaces (see Figure 5.12(a)). As we want to approximate the

Algorithm 5.3: CalculateParcellations
input : An integer col representing the color number,

a list R containing Network Regions and Context Regions,
a map B containing the brain hierarchy
an enum pr for the priority.

output : A list P containing the parcellations.
1 if col ≤ 0 then
2 return ∅;
3 end
4 Pl ← CalculateLeftParcellations(col, R, B.subregions[0], pr) ;

// B.subregions[0] represents the left hemisphere
5 Pr ← GetRegionsFromOppositeHemisphere(Pl);
6 P ← Pl ∪ Pr;
7 return P;
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Algorithm 5.4: CalculateLeftParcellations
input : An integer col representing the number of distinct colored left

parcellations,
a list R containing Network Regions and Context Regions,
a list Pl containing the left Parcellations,
an enum pr for the priority.

output : A list Pl containing the context regions.
1 if |colors in Pl| ≥ col then
2 return Pl;
3 end
4 if pr = SIZE then
5 sort Pl by size;
6 end
7 else
8 sort Pl by connectivity;
9 end

10 foreach p ∈ Pl do
11 SP ← p.subregions;
12 SP ← SP\R;
13 if SP ∈ R then
14 continue;
15 end
16 col′ ← |colors in SP| + |colors in Pl| − 1;
17 if col′ > col then
18 continue;
19 end
20 Pl ← Pl\{p};
21 Pl ← Pl ∪ SP;
22 return CalculateLeftParcellations(col, R, Pl, pr);
23 end
24 return Pl;

shape of the brain we use this fact by adding points on the convex hull to the Voronoi
calculation. The convex hull is calculated using the Network and Context Nodes (see
Figure 5.12(b)). Along the hull a large number of points at equal distance from each
other is calculated. The number of 100 to 500 points yields good results. We denote
these points along the convex hull as Border Points. To create some space between the
outer most Network Nodes and the outer shape of the background we add a padding to
the convex hull. The effect of the padding becomes clearer in the next step. We calculate
the Voronoi diagram based on the points in S and the Border Points (Figure 5.12(c)).
To visualize the parcellations, we add a contour by drawing lines between each pair of
Voronoi cells belonging to different parcellations. The Voronoi edges generated by a cell
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(a) (b)

(c) (d)

Figure 5.12: Steps for drawing the contour of the parcellations (black) of a mouse brain.
(a) Voronoi diagram. (b) convex hull with padding. (c) Voronoi diagram including 200
Border Points evenly spaced along the hull. The Voronoi edges created by a Border
Point and a node are the outline of the brain. The Voronoi edges of two Voronoi cells of
Border Points are shown in gray color. (d) Final contours of the parcellations.

of a Border Point and a Network or Context Node create the outer border of the shape of
the brain. The padding in the convex hull creates the space between the outer border and
the nodes, as otherwise the Border Points would lie on the line between the nodes and the
resulting outer border would overlap with the nodes. The Voronoi edges resulting from
cells of two Border Points generate radiating lines (visible in Figure 5.12(c) in gray color).
For the final result the radiating edges as well as edges between cells of nodes belonging to
the same region of the parcellation are not visualized (Figure 5.12(d)). In the transversal
perspective an additional thicker line is drawn between the two hemispheres to emphasize
the symmetry. This diagram forms the basis of the Parcellation Background.

Finally, each Voronoi cell is colored with the color of the parcellation to which its
Network Node or Context Node belongs. The colors are derived from the Allen Brain
Atlases. Depending on the Gray-scale parameter for context (see Section 5.6) we calculate

63
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the gray-scale of the nodes parcellation color by calculating the weighted average of the
three color channels: 0.3R + 0.59G + 0.11B. The figures for this thesis and the user study
were generated with an older application version that used the average method: R+G+B

3 .
The gray-scale option should be used with caution, as different colors can produce the
same gray value. The Voronoi cells that belong to the points along the convex hull are
rendered transparently.

5.8 Connectivity
Up until now, we used the Parcellation-derived Connectivity to layout the graph using the
Anatomical Layout (Section 5.5.2) and, depending on the species, applied the triangulation
with the Aesthetic Layout (Section 5.5.3). After the graph is layouted, those edges are
not required anymore. We remove them and instead add the Rendered Connectivity we
want to visualize as edges in the graph.
Since the edges are numerous, it is expected that they will include many crossings, which
is acceptable since we focus on the representation and preservation of spatial relationships
between regions. To reduce the crossings a threshold can be applied by setting the
percentage of strongest connections that should be rendered. Another option is to apply
edge bundling or edge layouting (R8). Edge bundling reduces the visual clutter by
visually bundling together similar edges. This bundling can help to highlight important
edge patterns and often makes it easier to spot interesting connections or important data.
An example is shown in Figure 5.13(b), Figure 3.4 and 3.5. Edge layouting also aims
to draw edges in a way that reduces the visual clutter within a graph. One example is
the organic edge layouting, a force-directed layout ensuring that edges do not overlap
nodes (see Figure 5.13(c)). Another approach is the orthogonal routing, which routes
edges using vertical and horizontal line segments only (Figure 5.13(d)).

5.9 Visual Encoding
The generated result of Spatial-Data-Driven Layouts as seen in Figure 5.13 is a node-link
diagram representing the brain connectivity. It maps neurobiological 3D networks into
2D while maintaining spatial relations and reducing occlusions and clutter. Each node
represents a specific brain region. It is labeled with an abbreviation of the region’s name,
including its brain hemisphere (left or right). The color encoding is derived from the
Allen Brain Atlas as described in Section 5.7. We apply this color scheme as it is well
known in the neuroscientific research community.
The connectivity holds structural connections between regions, as described by Oh et al.
[OHN+14]. The connections of the connectivity are represented by links or edges in the
graph. The opacity visualizes the strength of a connection causing weak connections to
appear more transparent to keep the focus on stronger and darker connections.
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5.9. Visual Encoding

(a) Straight edges

(b) Edge bundling

Figure 5.13: Comparison of different edge routings [GWW+22]. (a) straight, (b) light
edge bundling. This figure is an extended version found in the paper by Ganglberger et
al. [GWW+22].
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(c) Organic Edge Router

(d) Orthogonal Edge Router

Figure 5.13: Comparison of different edge routings [GWW+22] (cont.). (a) organic
routing and (b) orthogonal routing. The routers are available in the Cytoscape desktop
app via the yFiles extension [yfi]. This figure is an extended version found in the paper
by Ganglberger et al. [GWW+22].
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CHAPTER 6
Implementation

The implementation follows closely the design we presented in Chapter 5. Additionally
we present the technology used to create a tool which is performant and compatible across
platforms. We start with the program flow, to give an overview and link components of
the implementation with our requirements and methodology. The Section 6.2 describes
the used technology stack. Finally we describe each step of our methodology from a
technical perspective.

6.1 Program Flow
Our web application is written using the React.js library [rea]. Its setup is rather simple,
including two components:

• AppComponent: This is the main component that loads and prepares all required
data. It includes mapping our data to nodes and edges.

• CytoscapeContainer: It represents our view component and renders the graph using
the CytoscapeComponent library. It also draws the Parcellation Background.

An overview of the program is given in Figure 6.1 and the set of parameters and their
values can be seen in Table 6.1. The first step in our program is to load the data of the
network we want to visualize in JSON format. This information contains the connectivity
and the included brain regions as described in Chapter 4. In case of a partial network we
then calculate the regions that are not part of the network but are used to show context
as described in the Section 5.6. Based on the user-defined Context Ratio the appropriate
number of Context Regions is calculated as described in Algorithm 5.1 and 5.2.
The next step is to compute the parcellations that cover the Network and Context
Regions as described in Section 5.7 using the Algorithms 5.3 and 5.4. After all required
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6. Implementation

Figure 6.1: Program flow and components. The AppComponent prepares the data which
is used by the CytoscapeContainer to draw the graph. The number of iteration n of the
Aesthetic Layout can be adapted, depending on the network. We heuristically evaluated
that n = 3 works well for the human and mouse brain networks, while we did not apply
the Aesthetic Layout (n = 0) for the fruit fly larval brain.
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regions are calculated, we map these regions to Cytoscape.js nodes. We distinguish
between Network Nodes and Context Nodes. The nodes are positioned depending on the
perspective, as outlined in Section 5.4. For the sagittal perspective we add compound
nodes for each node pair that belongs to corresponding parcellations of the left and right
hemisphere.
Finally, we render the graph and the Parcellation Background. For the graph we pass the
nodes and the Parcellation-derived Connectivity to the layout function of Cytoscape.js,
which takes care of layouting and visualizing the graph. The Anatomical Layout is applied
to position the regions to reflect the anatomical and spatial structure of the brain. The
methodology for this step is described in Section 5.5.2. In case of the sagittal perspective
we shift the position of the nodes representing regions of the right hemisphere in each
compound (see Section 5.5.4) to create a consistent distribution between two related
nodes. The Anatomical Layout can lead to overlaps depending on the overall structure
of the brain, as well as the perspective. Additional rounds of layouting can be applied
with another set of edges and parameters, which we describe as Aesthetic Layout in
Section 5.5.3. The edges are replaced by the ones representing the Rendered Connectivity
(see Chapter 4).
For the Parcellation Background we draw the Voronoi diagram as described in Section 5.7
on a HTML canvas. The colors of the parcellations calculated before are applied to
colorize the Voronoi cells surrounding the Network Nodes and the Context Nodes.

6.2 Technology
The application is implemented in JavaScript using the library React.js v16.5.2. We
use the open-source graph-drawing library Cytoscape.js v3.14.1. for implementing
our visualization of the neuronal networks. The library provides multiple layouting
algorithms for graph data. For easier handling of the Cytoscape data with React.js we
use react-cytoscapejs v1.1.0. To draw the background underneath the graph, we apply
cytoscape-canvas v3.0.1. In the remaining part of this section we give an overview of the
graph drawing library Cytoscape.js [FLH+16] and the task-driven, web-based framework
BrainTrawler [GSF+19], as both are relevant to our work.

Cytoscape.js

For the rendering of our graph we use the visualization library Cytoscape.js [FLH+16].
Cytoscape.js supports many different graph types such as directed graphs, undirected
graphs, mixed graphs, loops, multigraphs, and compound graphs. We describe now the
properties and options of Cytoscape.js that are relevant to our work, although more
functionality is available.
Cytoscape.js’ architecture includes two components - the Core (i.e., a graph instance)
and the Collection. The Core is the main entry point to the library. A programmer can
use it to alter the viewport and operate on the graph, like running a layouting algorithm.
It furthermore provides several functions to access elements of a graph, such as edges
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Table 6.1: Overview of parameters that are used for Spatial-Data-Driven Layouts.

Parameter Values Description

species mouse
human
drosophila

the species whose brain network should be visu-
alized

filePath path to the network data

perspective sagittal view from the side

transversal top-down view

contextRatio ratio of context for partial networks

colorCount number of distinct colors in the Parcellation
Background

priority anatomical largest parcellation is divided first

importance parcellation with highest number of connections
is divided first

connectivityFilter 0-100 % percentage of weakest connections, that should
be filtered

grayScale none nodes and background colorized according to
Allen Brain Atlas

contextGray parcellation of context regions is rendered in
gray-scale

allGray all nodes and whole parcellation is rendered in
gray-scale

handleUnbalanced addAsNode add missing conterpart as node

addAsContext add missing conterpart as context

remove remove modes without counterpart

ignore leave network as it is
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and nodes. These functions return a Collection, a set of elements of the graph. The
Collection, in turn, provides functions to view or manipulate nodes and edges.
To create nodes or edges JavaScript objects that follow a specific format can be used.
The group field defines the type of an element and can be either nodes or edges. The
data field contains metadata for each element. An identifier is mandatory and is assigned
automatically if not defined. Label and color can be set for each element. Nodes are
positioned by setting coordinates and can have another node as parent, which is rendered
as a compound node. In the following a simple example of a node object is given as we
use it in our tool:

{
group: 'nodes',
data: {

id: 'n_1',
label: 'label',
color: '#ff0000',
parent: 'n_0',
},

position: { x: 100, y: 100 },
classes: [],

},

Edges require a reference to their start and end node. We denote these as source and
target, respectively, as this is the label of the fields in Cytoscape.js. Edges can be
weighted. The following is an example of an edge object:

{
group: 'edges',
data: {

id: 'e_0',
label: 'n_0 to n_1',
color: '#ff0000',
source: 'n_0',
target: 'n_1',
weight: 0.75,
},
classes: [],

}

We can apply different styling properties using Cascading Style Sheets (CSS) by setting
one or more CSS classes. Cytoscape.js provides additional styling properties including
the shape of nodes and a set of different edge types and arrowheads.
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Cytoscape.js is a part of the Cytoscape Consortium. They also provide Cytoscape [cyt]
an open-source desktop application for visualizing complex networks. As Cytoscape.js is
limited regarding the visualization of different edge layouts, we migrate our visualization
created with Cytoscape.js to the desktop application to perform further edge layouts.

BrainTrawler

BrainTrawler [GSF+19] is a task-driven, web-based framework developed by VRVis [vrv]
in collaboration with the Institute of Molecular Pathology [imp] in Vienna. To create
our Spatial-Data-Driven Layouts, we use BrainTrawler to select and export our network
data and use BrainTrawler’s API to query the connectivity data for the Context Regions.
It allows visualization and iterative exploration of spatial data. This includes imaging
data showing brain-wide gene expressions, fMRI, or structural data, with structural,
functional, and genetic anatomical relations at different hierarchical anatomical levels.
The data includes, among other information, hierarchical parcellations and structural
annotations (e.g., Allen Mouse Brain Atlas and Allen Human Brain Region Annotations),
region-wise connectomes/relations (e.g., resting-state functional connectivity), and voxel-
wise connectivity/relations (e.g., structural connectivity, gene co-expression), all aligned
to a common reference space. Aggregation Queries [GKHB20] represent the aggregated
incoming and outgoing connectivity of volumes of interest and are performed in real-time.
This data can be explored interactively on different anatomical scales.
Following steps in the BrainTrawler Framework are required to generate a data set for
Spatial-Data-Driven Layouts:

1. Browse parcellations: The Parcellation Browser represents the hierarchical organi-
zation of the brain parcellation in a tree view, including the name and color code
of every brain region (Figure 6.2). Its main purpose is to select the brain regions
that should be visualized.

2. Browse connectivities: The database yields the data collections that the user can
browse and select (Figure 6.3). This includes the Parcellation-derived Connectivities
and other connectivities. An example for such a connectivity is the Resting-State
Network which is used to identify coherent fluctuations in brain activity when an
individual is not actively engaged in a cognitive task.

3. Refine connectivity (optional): The user can perform source/target queries or query
areas by directly selecting the areas of interest based on a 3D brain visualization
(Figure 6.4). The results of the queries are received instantly.

4. Export the networks: The user gets an overview of the imported connectivities and
has the possibility to filter these (Figure 6.5). For the reproducibility of our results,
we do not filter the Parcellation-derived Connectivity and use all the connections
available. Finally, the data set can be exported as a JSON file.

72



6.3. Preprocessing

The exported file includes the Parcellation-derived Connectivity, the connectivity we
want to render, as well as the parcellation of interest.

6.3 Preprocessing
Two files containing the Hierarchical Brain Parcellation and the Brain Network are
generated via BrainTrawler [GSF+19] as described in Section 6.2. The connectivities of
the Brain Network have to include at least one of the Parcellation-derived Connectivities
to aid during the layout process and a Rendered Connectivity of interest for the final
visualization. Both files are imported into our AppComponent.
We often retrieve data of a specific region in the Hierarchical Brain Parcellation. For
easier access we map the data in the Hierarchical Brain Parcellation from its tree structure
to key-value pairs, with the key holding the identifier of the region (rid). We denote this
collection of key-value pairs as Parcellation map. We apply additional information to
each region in the Parcellation map, which is helpful in later calculations. To prioritize
regions by their number of connections during the calculation of the parcellations in
Algorithm 5.4, we calculate this number beforehand. The sum of the connections is
calculated by accumulating the number of connections of each regions sub-regions in the
Rendered Connectivity. Only connections where the region is the source are counted. In
order to assign each Network and Context Region more easily to its parcellation, a list of
all the super-regions per region is given.
Before we can visualize the imported network, we need to map its data to the node and
edge objects provided by Cytoscape.js. as described in Section 6.2. These objects need to
have a unique identifier, which we have to parse due to incompatibility to Cytoscape.js.
The rids of the regions in our data have the format "#n:m", where n denotes a numeric id
of the species and m the id of the parcellation. Cytoscape.js however does not accept the
characters ’#’ and ’:’ in an identifier, hence we map all the rids to the accepted format
"n_m". We map the rid in each region as well as in the source and target reference in
each edge representing a connection.
The Network Regions can be directly derived from the input file. The Context Regions
and parcellations for the Parcellation background are calculated in the next steps. We
handle unbalanced Network Regions as described in Section 5.3. If the handleUnbalanced
parameter is set to ’addAsNode’ or ’addAsContext’ we look up the missing regions and
add their reference to the list of Network Regions or Context Regions, respectively. In
the case of ’remove’, we look up all regions from the set of Network Regions that do not
have a corresponding region from the other hemisphere and remove them. Connections
that reference a removed node also need to be excluded as Cytoscape.js will throw an
exception due to the missing reference.
Finally, we visualize the Rendered Connectivity we chose via BrainTrawler [GSF+19]. The
normalized weights of the connections are used to set the opacity of the edges in the final
visualization. Edges representing the strong connections are rendered in solid color, while
edges with a low weight are rendered transparent. Normalizing the Parcellation-derived
Connectivity is not required, as the layout algorithm we apply does not account for edge
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weights. To overcome the problem that weak and insignificant connections have the
same impact on the layout as strong ones we filter the Parcellation-derived Connectivity
and leave only the four strongest outgoing connections for each node (as described in
Section 5.5).

6.4 Context
We calculate the Context Regions based on the Context Ratio parameter (see Table 6.1)
as described by the Algorithms 5.1 and 5.2. We include the connectivity data of the
Context Regions by fetching missing information via the BrainTrawler API [GSF+19].
This step is required as the Context Regions and their connectivity are not part of the
input file we created with BrainTrawler (Section 6.2). The Context Regions are then
included in the layout algorithm. The nodes of the Context Regions themselves are set to
be opaque and are considered in the later step of drawing the Parcellation Background.

6.5 Parcellation
We calculate a set of parcellations that is later used to draw the Parcellation Background.
The calculation follows the Algorithms 5.3 and 5.4 and depends on the parameters
Color Count and Priority (see Table 6.1). For the anatomical-driven priority we use
the anatomical size of each region, which is already included in the files generated by
BrainTrawler, while the number of connections for the importance-driven priority is
calculated as described in Section 6.3.

6.6 Mapping Regions to Nodes
After we calculated the required Network and Context Regions we need to map these
regions to Cytoscape.js node objects. Data like the color and position of each node is
derived from the Parcellation map. We add a custom field to the node objects to easily
differentiate among the types Network and Context. We assign each Network and Context
Node to a region from the parcellations. The parcellation for each node can be looked up
in its entry in the Parcellation map, as we saved a list of all super-regions per regions (see
Section 6.3). The parent field in the Cytoscape.js node options is reserved for compounds,
hence we create a custom field that holds a reference to the parcellation of the node.
In the sagittal perspective Network Nodes of corresponding regions of different hemi-
spheres, e.g., left and right hypothalamus, overlap due to the symmetry of the two
hemispheres. This issue is solved by applying compounds on the node pairs and by
shifting the positions as described in Section 5.5.4. Compound nodes are applied by
generating a new Cytoscape.js node object and setting the compounds identifier in the
parent fields of the two nodes, that should be encapsulated by the compound. The shift
to the position of each Network Node belonging to the right hemisphere is performed, as
described in Section 5.4. The shift creates a uniform relation between each pair. For the
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shift we set the position of the right region to the position of the left region and adapt
its x and y coordinate. We choose a distance proportional to the diameter of the node
and heuristically found that a slightly larger distance for the x coordinate compared to
the one of the y coordinate yields good results. In our case the x coordinate is shifted by
1.2 ∗ d and the y coordinate by 0.8 ∗ d, where d is the diameter of the nodes. Overlaps
among different node pairs are reduced by the compound nodes (see Figure 5.3). We
heuristically determined that applying the shift after the Anatomical Layout yields the
best result. This is probably due to the forces that are applied during the Anatomical
Layout, that also affect the shifted position of nodes, if the shift is applied beforehand.

6.7 Layouting
Cytoscape.js provides a set of layout algorithms including circle, concentric, and grid
layouts and several force-directed layouts, that can be embedded as an extension for
Cytoscape.js. We apply the CoSE (Compound Spring Embedder) implemented in Cy-
toscape.js. This force-directed algorithm was already mentioned in Sections 3.1.2 and 5.5.
Technical details of the algorithm can be found in the work of Dogrusoz et al. [DGC+09].
CoSE’s implementation is available as extension to the Cytoscape.js graph visualization
library under the name CoSE-Bilkent [cos]. The layouting parameters are found in the
Appendix for networks of the mouse, human, and D. melanogaster larval brains from
transversal and sagittal perspective.

6.8 Parcellation Background
The next step is to draw the background to encode the spatial brain parcellation. As the
idea is to group nodes that belong to the same parcellation by color and contour (see
Section 5.7) separating lines are drawn between cells belonging to different parcellations.
In the transversal perspective another broader line is rendered to visually separate the
left and right hemispheres of the brain. To apply the coloring and outlining in the
background each node has a reference to its parent in the parcellation.
We draw the Parcellation Background using the HTML canvas [htm]. The stroke function
is used to set the color of the line drawn around the object, i.e., a Voronoi cell, while the
fill function sets the color inside the object.
The first step is the calculation of the convex hull and the Voronoi diagram as described
in Section 5.7. To avoid having to implement the algorithms for calculating the Voronoi
diagram and the convex hull from scratch, we used existing JavaScript libraries. The
library d3-delaunay.js v5.2.1 was used to calculate the Voronoi diagram and the code
by Hollasch [hol] was applied to generate the convex hull. The combined set of Network
Nodes and Context Nodes forms the basis for the calculation of the convex hull and the
Voronoi diagram.
We first compute the convex hull including some padding around the nodes. We calculate
a high number of Border Points along the convex hull and include them in the calculation
of the Voronoi diagram. The Border Points are used to create the outer border and the
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(a) Color Canvas (b) Parcellation Outline Canvas

(c) Hemisphere Outline Canvas

Figure 6.6: Canvas layers for the parcellation of a mouse brain with 90 regions, Color
Count of six, from transversal perspective. (a) Coloring of regions by the number of
colors using the encoding of the Allen Brain Atlas. (b) Contours of the parcellations. (c)
The outline (thick black line) between the left and right hemispheres (only applied in
transversal perspective).
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shape of the brain in the final visualization as depicted in Figure 5.12(c).
To render the background, we use the extension Cytoscape-canvas to create a canvas
beneath our Cytoscape.js graph. It provides functionality to synchronize the positioning
and interactions of the canvas and the graph, such as dragging and zooming. We apply
up to three canvases (see Figure 6.6):

• Color Canvas: It includes the color of the parcellation the region belongs to for
each Voronoi cell. The parcellation for each region is encoded in its entry in the
Parcellation map, as it is included in the list of all super-regions per regions (see
Section 6.3).

• Parcellation Outline Canvas: It shows a black outline between Voronoi cells that
belong to regions of different parcellations.

• Hemisphere Outline Canvas: It only applies in the transversal perspective and
depicts a thicker outline between the left and the right hemispheres of the brain.

For each canvas we iterate over the list of Voronoi cells and apply different colors for
filling and outlines. The basis for the colors and the outlines of each canvas are maps with
key-value pairs. The parcellation is used as key in the Color Canvas and the Parcellation
Outline Canvas, while the keys for the Hemisphere Outline Canvas represent the two
hemispheres. The value for each key is a list holding color values for each Voronoi cell in
a fixed order. The colors are either hex color codes or the CSS (Cascading Style Sheets)
property transparent. For the Color Canvas, if a cell belongs to a node that is included
in the parcellation the value in the list is set to the color value of the parcellation, else to
transparent. The map for the Parcellation Outline Canvas looks similar, but includes
black as a color value for cells that are included in a specific parcellation. The map for
the Hemisphere Outline Canvas distinguishes between left and right hemisphere and
contains black as value for elements that are contained in this hemisphere and transparent
otherwise.
We start with drawing the Color Canvas. We iterate over each Voronoi cell and apply

the color of its parcellation for the filling (Figure 6.6(a)). To avoid distraction by the
colors of the background, the parcelling colors are lightened by 25 %. Three color schemes
are available. The default is including all colors as provided in the Allen Brain Atlas. By
setting the Gray-scale parameter to contextGray the colors of Voronoi cells that belong
to Context Nodes are converted to gray values. The parameter allGray does the same for
all cells, including the nodes of the graph themselves. We apply the color to gray-scale
conversion by calculating the average value of the three color channels as described in
Section 5.7.
Rendering the two canvases for the outlines is more complex as it requires the combination
of two drawings per parcellation or hemisphere with filling and outlines of two different
widths via compositing operation of the Canvas 2D API. As visualized in Figure 6.7 the
idea is do first draw a set of Voronoi cells with a solid filling and a thick outline and
draw the same cells in a second step with a filling and a thinner outline. By overlapping
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Figure 6.7: Destination-out operation - it keeps the existing content where it does not
overlap the new shape [dev].

Figure 6.8: The thin outline of width w (black) overlaps the thick outline of width 3 ∗ w
(green) in its center. The filling is indicated by gray color. Only the outermost part of
the thick outline stays visible after the destination-out compositing operation.

the two images and applying the compositing operation only the border of the thicker
outline will remain (similar to the third image in Figure 6.7). As the width of the outline
grows to both directions equally, the outlines overlap in the center of their widths (see
Figure 6.8). If a outline should be drawn in a width of w, we set the width of the thinner
outline to w and the width of the thicker outline to 3 ∗ w, As the thin outline overlaps the
thick outline along the middle pixel only the outermost third of it stays visible. In our
application we apply values in pixel for the widths. Other units that do not depend on
the screen resolution, such as rem or em, can also be used. For our application, however,
values in pixel are sufficient. For the Parcellation Outline Canvas we iterate over the
parcellations and create each time the two drawings filled with black color. In our case we
set the width of the outline of the first drawing to a value of of three pixel and the second
to one pixel. We apply the destination-out operation which keeps the existing content
where it does not overlap the new shape. The result is the outline of the parcellation one
pixel wide. This step is repeated for each parcellation, which results in the outline of all
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parcellations (Figure 6.6(b)). By definition two adjacent Border Points on the convex
hull create Voronoi cells that share an infinitely long side. This is visualized by the gray
lines in Figure 5.12(c). As these cells are calculated only to create the outer shape of the
brain we do not apply any filling and stroke here. A similar approach is applied for the
Hemisphere Outline Canvas, but instead of the parcellations we distinguish between left
and right hemisphere and set the difference of the line width of both drawings to a higher
number, which results in a thicker outline surrounding the two hemispheres. To render
this thicker outline only in-between the two hemispheres we set an arbitrary, solid color
for the filling and stroke of the second, subtracting shape. This subtracts the outline of
the brain, resulting in the single line in-between the two hemispheres (Figure 6.6(c)).

6.9 Edge Routing
Edge routing and edge layouting provides measures to reduce clutter of edges within
a graph, as described in Section 5.8. Cytoscape.js only supports simple edge types,
such as straight (Figure 5.13(a)) or Bezier. In order to apply more sophisticated edge
routing algorithms we first need to transfer the layouted graph into the Cytoscape
desktop application [cyt]. Cytoscape.js provides a function for exporting the graph in
JSON format, which can be imported into the desktop application. The Parcellation
Background is also added separately as background image in the Cytoscape desktop
application. Cytoscape supports edge bundling using the algorithm by Holten and Van
Wijk [HVW09] (see Figure 5.13(b)). Further edge layouting techniques can be imported
into Cytoscape via the yFiles diagramming library [yfi]. This includes the Organic Edge
Router (Figure 5.13(c)), a layout ensuring that edges do not overlap nodes and the
Orthogonal Edge Router (Figure 5.13(d)), which routes edges using only vertical and
horizontal line segments.

Overall, our implementation of Spatial-Data-Driven Layouts renders the result in a couple
of seconds, depending on the size of the network. The largest part of the time is used for
layouting through the cytoscape.js library and drawing the background.
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CHAPTER 7
Evaluation

We first describe the aspects that play a vital role in the visualization of brain networks
(Section 7.1). Florian Ganglberger, an expert in the field of neuroscientific visualization,
conducted a case study to qualitatively evaluate visualizations for different species and
anatomical levels based on the positioning of brain regions. Based on his findings
[GWW+22], we designed user studies separated by species, which were conducted by
domain experts (Section 7.2). Subsequently, the results of these studies are presented,
whose analyses were performed by my colleagues Florian Ganglberger and Hsiang-Yun
Wu.

7.1 Case Study
Evaluation of the anatomical feasibility was not in the scope of this thesis and has been
performed by Ganglberger. A detailed description is provided in related work [GWW+22]
and is summarized in this section. Ganglberger conducted case studies on two different
species - mouse and human - as those species are of particular importance in neuroscience.
His studies form the basis to demonstrate the general applicability of our approach
on different brain architectures. Additionally, he evaluated first visualizations of the
Drosophila melanogaster larval brain. Due to the lack of relevant network data for the
fruit fly’s circular neurons at the time of the studies, no proper user study has been
conducted in this case. However, Ganglberger has already received numerous feedback
from the Drosophila neuroscience community and will probably conduct the study at a
later time.
To qualitatively evaluate the Spatial-Data-Driven Layouts Ganglberger checked if anatom-
ically close regions in 3D are also spatially close in the 2D network graph. Color coding
was applied to the nodes and to the Parcellation Background to further illustrate this
comparison. Brain regions with similar hues are spatially close and should also be
positioned close to each other by the layout. Ganglberger used the interactive Atlas
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Viewer of the Allen Institute [All] for reference and further evaluation. For the creation
of the figures the parameters for the force-directed layout had to be adapted. Based on
Ganglbergers case study, a set of parameter values was defined for each species and each
perspective (see Section 5.5). The following two sections detail Ganglberger’s findings of
applying Spatial-Data-Driven Layouts combined with Parcellation-derived Connectivity
to mouse and human brain networks.

7.1.1 Mouse Brain

The mouse is a widely used model organism and its brain is commonly used to study
neuronal connectivity in neuroscience [FLN+15]. The Allen Institute for Brain Science
[WDL+20] has produced several reference atlases for the analysis, visualization, and
integration of multimodal and multiscale data sets. It does not only provide a voxel-level
representation of brain regions but also a Hierarchical Representation of Brain Regions
(Figure 5.10).
Ganglberger et al. [GKHB20] used this data to create two types of Parcellation-derived
Connectivities: one representing the reciprocal distance between the brain regions center-
of-gravity (Reciprocal Distance) and the second representing the number of neighbour-
ing voxels between the regions (Neighborhood). Both connectivities are described in
Chapter 4). To demonstrate the effects of the Parcellation-derived Connectivity on the
Spatial-Data-Driven Layouts on a mouse brain network Ganglberger et al. [GWW+22]
created Figures 7.1 and 7.2 for the transversal and sagittal perspective, respectively. The
edges in the 2D projections represent the Neighborhood Parcellation-derived Connectivity.
For comparison, images of the network layouted without any connectivity are provided.
As seen in the 2D projection of the mouse brain in the transversal perspective it is rather
flat as there are not many node overlaps. In the sagittal perspective more regions occlude
each other due to the deeper structure. Here the effect of the Spatial-Data-Driven Layouts
is more apparent than in the transversal perspective. Overall, the effect increases with
the size of the network, as can be seen in the distribution of 997 Network Regions in
Figure 7.3.
Ganglberger stated that the layout without connectivity created a blob-like structure.
The layout based on the reciprocal distance (Figure 7.2) pulls together more regions
based on their anatomical positions than the layout generated without connectivity, thus
resembling the shape of the mouse brain. Ganglberger points out that the layout based
on the neighboring voxels yields even better results, as the thalamic and hypothalamic
regions (red) and the striatal regions (light and dark blue) are connected in this case
(marked in Figure 7.2(d)).

One goal of our method is to reproduce figures from neuroscientific publications. To
showcase the applicability of Spatial-Data-Driven Layouts for this case, domain experts
suggested illustrations of a mouse brain network from neuroscientific publications. We
recreate these illustrations using Spatial-Data-Driven Layouts for comparison.
The dopaminergic circuitry in the mouse brain as published by Russo and Nestler
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(a) 2D Projection (b) No Connectivity

(c) Reciprocal Distance (d) Neighborhood

Figure 7.1: Effects of Parcellation-derived Connectivitiy on the Spatial-Data-Driven
Layouts of the mouse brain from transversal perspective. (a) the 2D projection of
Parcellation-derived Connectivity. (b) layout of the nodes without connectivity at all.
(c) layout with the reciprocal distance as Parcellation-derived Connectivity. (d). layout
using the number of neighbouring voxels as Parcellation-derived Connectivity. The figure
is an adaption of a figure created by Ganglberger et al. [GWW+22].
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(a) 2D Projection (b) No Connectivity

(c) Reciprocal Distance (d) Neighborhood

Figure 7.2: Effects of Parcellation-derived Connectivitiy on the Spatial-Data-Driven
Layouts of the mouse brain from sagittal perspective. (a) the 2D projection of Parcellation-
derived Connectivity. (b) layout of the nodes without connectivity at all. (c) layout
with the reciprocal distance as Parcellation-derived Connectivity. (d). layout using the
number of neighbouring voxels as Parcellation-derived Connectivity. The improvements
compared to the other figures are highlighted in red and blue. The figure is an adaption
of a figure created by Ganglberger et al. [GWW+22].
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(a) 3D Projection (b) Spatial-Data-Driven Layouts

Figure 7.3: Effect of the Spatial-Data-Driven Layouts on node distribution for a large
mouse brain network with 997 nodes. The left side shows a transversal 2D projection,
the right side a Spatial-Data-Driven Layout of the same network. Labels, edges, and
background are removed for the clarity of the layout. Figure by Ganglberger et al.
[GWW+22].

[RN13] was used. The illustration is shown in Figure 7.4(a). We approximated this
illustration as seen in Figure 7.4(b) by visualizing a neuronal network consisting of brain
regions that correspond to the ones in the paper figure. The structural connectivity and
the dopaminergic circuitry do not represent the same modality, hence the structural
connectivity can only be seen as an approximation as not all connections are similar or
present.
Ganglberger investigated if the spatial positioning of the result is similarly aligned as
seen in the interactive Atlas Viewer [int] (Figure 2.2). He pointed out a single alleged
inconsistency marked in Figure 7.4(b) in the distance between the lateral habenula (light
red, LH) and the lateral hypothalamus (red, LHA). Their super-regions (thalamus and
hypothalamus, accordingly) are positioned next to each other, hence the first intuition
is that also LH and LHA should be adjacent. His statement is that the LH lies on
the superior part of the thalamus, while LHA is positioned on the lateral side of the
hypothalamus. Consequently, these regions are not adjacent and therefore correctly
positioned.

7.1.2 Human Brain

Similar to the reference atlas of the mouse brain the Allen Institute published the Allen
Human Reference Atlas [DRS+16]. The human brain atlas provides high-resolution
histology 2D slices. In contrast to the reference atlas of the mouse brain it does not
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(a)

(b)

Figure 7.4: The dopaminergic circuitry in the mouse brain (a) by Russo and Nestler
[RN13] and (b) its recreation with Spatial-Data-Driven Layouts. The two figures do not
represent the same modality. The regions of the alleged inconsistency pointed out by
Ganglberger are marked by blue arrows.
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include a common coordinate framework to derive voxel-level representations of brain
regions. Therefore, the neighborhood-based Parcellation-derived Connectivity could not
be evaluated for the human brain. The brain’s reciprocal distance among the regions
for the distance-based Parcellation-derived Connectivity was calculated by Ganglberger
using data from a paper by Hawrylycz et al. [HLGB+12]. It provides 3D positions of
samples labeled with Allen Human Reference Atlas brain regions.
Ganglberger evaluated the results using a case study analogous to the one of the mouse
brain (Figures 7.5 and 7.6). He stated that the transversal perspective already showed
promising results after layouting without connectivity. This is mainly because of the
humans cortex parcellation in frontal, lateral, and posterior lobes. The sagittal perspective,
however, required the Parcellation-derived Connectivity to group brain regions by their
anatomical relations.
Again he checked if the brain regions were positioned and if they were adjoining each
other correctly by comparing the result with the interactive Human Brain Atlas Viewer
(Figure 2.3). He found a discrepancy in the position of the temporal pole (TP, light red)
that is not connected to the other regions of the temporal lobe (light red). He stated
that in relation to the regions of the cerebral nuclei (purple), its position is still correct,
as the temporal pole and the cerebral nuclei are actually adjacent to each other. A more
detailed examination of the positions of the brain regions using the interactive Human
Brain Atlas Viewer [int] showed an overall consistency with the anatomy according to
Ganglberger.
Analogous to the figure of the mouse brain, we also recreated a graph from an illustration
of the human brain in the literature. The figure by Gotter et al. [GWC+12], was suggested
to us by domain experts (Figure 7.7(a)). The figure shows orexinergic neuron projections
originating from the hypothalamus in the human brain. For its approximation we applied
a data set with 20 % of the strongest connections. They originate from the hypothalamus
at a hierarchical brain region level covering most of the figure’s brain regions. Since
structural connectivity was not available, we used the functional resting-state connectivity
from the Human Connectome Project. Ganglberger stated that the strongest connections
in our visualization using data by Hawrylycz et al. [HLGB+12] cover the ones in the
figure by Gotter et al. well. Missing regions were the lateral dorsal tegmental nuclues
(LDT) and the locus ceruleus (LC), but their parent region pontine tegmentum (PTg)
was still within the strongest 40 % of the connections (not shown in Figure 7.7).

7.2 User Study
The first part of this section gives an overview of the study design, how the study was
conducted, and what tasks and questions were posed to the participants. For each species
a separate study was designed and conducted in collaboration with Florian Ganglberger
and Hsiang-Yun Wu. Following this, an overview of the results evaluated by Ganglberger
and Wu is provided. The evaluation of the results was not in the scope of this thesis
and is summarized here for completeness. More details can be found in the work of
Ganglberger et al. [GWW+22].
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(a) 2D Projection (b) No Connectivity

(c) Reciprocal Distance

Figure 7.5: Effects of Parcellation-derived Connectivitiy on the Spatial-Data-Driven
Layouts of the human brain from transversal perspective. (a) the 2D projection of
Parcellation-derived Connectivity. (b) layout of the nodes without connectivity at all.
(c) layout with the reciprocal distance as Parcellation-derived Connectivity. Regions of
the discrepancy described by Ganglberger are marked with blue arrows. The figure is an
adaption of a figure created by Ganglberger et al. [GWW+22].
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(a) 2D Projection (b) No Connectivity

(c) Reciprocal Distance

Figure 7.6: Effects of Parcellation-derived Connectivitiy on the Spatial-Data-Driven Lay-
outs of the human brain from sagittal perspective. (a) the 2D projection of Parcellation-
derived Connectivity. (b) layout of the nodes without connectivity at all. (c) layout with
the reciprocal distance as Parcellation-derived Connectivity. Regions of the discrepancy
described by Ganglberger are marked with blue arrows. The figure is an adaption of a
figure created by Ganglberger et al. [GWW+22].
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(a)

(b)

Figure 7.7: The orexinergic neuron projections originating from the hypothalamus in the
human brain. (a) Figure by Gotter et al. [GWC+12]. (b) Its recreation with Spatial-
Data-Driven Layouts. Brain region hierarchy level was selected to cover the majority of
brain regions depicted in (a) and the strongest 20 % of outgoing functional resting-state
connections of the hypothalamus were used.94



7.2. User Study

7.2.1 Study Design
Separate user studies were created and conducted for the mouse and human brain. Each
participant already knows the species in question. We include images of whole and partial
networks from sagittal and transversal perspectives. To compare our results we provide
multiple visualizations:

• Directly projected layout: No layout algorithm applied

• Spatial-Data-Driven Layouts without background

• Spatial-Data-Driven Layouts with background: This represents our final result. In
this case we additionally evaluate the coloring:

– Grayscale: The whole visualization - Network Nodes and Parcellation Back-
ground - are displayed in gray-scale.

– Context Grayscale: Only the parcellations of context in partial networks are
displayed in gray-scale.

The created Spatial-Data-Driven Layouts represent perspectives commonly used in
neuroscience - sagittal and transversal. For the creation of the visualizations we took
care to choose a set of layout parameters (described in Sections 5.5 and 6.7) per species
and perspective that best reflects the findings of Ganglbergers case studies (Section 7.1).

The results produced by Spatial-Data-Driven Layouts of different networks, including
the reproduction of the figures from the literature were evaluated by experts using a
questionnaire. The questionnaire consists of four parts:

(S1) Identifying Nodes/Connections: The first part evaluates the efficiency of our
layout. Using click-tasks, we asked the participants to find the target-node that
yields the strongest connection to a given region. We measured the time the user
needed to click on the found region. The surveyed region pairs were carefully
selected so that the strongest connection per node was distinct and overlaps of the
relevant edges did not lead to impairments. The visualizations include the whole
brain from the transversal perspective in three representations: directly projected
layout, Spatial-Data-Driven Layouts without background and Spatial-Data-Driven
Layouts with background. We then compared the times of the three representations
to test the efficiency of Spatial-Data-Driven Layouts.

(S2) Visualization of Anatomical Context: In this part we focus on the visualization
of the anatomical context that includes figures of complete and partial brain
networks. The tasks are to rank the figures by clarity and answer questions about
suitability for a figure in a paper or for educational purposes. The networks include
different numbers of regions and the partial brain networks are visualized with a
varying amount of context. Differences in coloring based on connectivity or size of
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regions, as described in Section 5.5 are also assessed. For the partial networks, we
want to examine how helpful the context is. In addition, the comparison between the
left and right hemispheres of the brain will be evaluated. Furthermore, we compare
artistically drawn figures from neuroscientific publications [GWC+12, SWT+20]
with the figures generated by our tool (Figures 7.4 and 7.7).

(S3) Edge Visualization: This part evaluates the preference among multiple edge
layouts. Participants are asked to rank figures including different numbers of edges
(top 10 %, 20 %, or 30 % of connections). Additionally, we examine different edge
routing layouts (straight arrows, organic edge routing, and orthogonal edge routing)
based on suitability for publications.

(S4) Demographic Data: The last part includes personal questions like the current
position and gender of the participant. We asked if the user is already familiar with
the Allen Brain Atlas as we use its color scheme and abbreviations of region names.
As the perception of color plays a crucial role in visualizations, we also check for
color blindness.

The recruitment of participants was conducted by my colleagues Ganglberger and Wu.
To reach as many participants as possible they sent out the user study in the form of a
web survey. It was implemented with Google Forms by Wu.

7.2.2 Results
The evaluation of the user study was carried out by Ganglberger and Wu. To complete
this work the results are summarised in the following sections. An overview of the results
can be seen in Table 7.1. Again, details of the results are given in the work of Ganglberger
et al. [GWW+22].

Evaluation Results of the Mouse Brain Network Visualization

For the mouse user study three female participants and five male participants were
recruited by Ganglberger and Wu to investigate the effectiveness of our visualization.
All participants are at a senior level - five postdoctoral researchers and three principal
investigators - with certain domain knowledge. Among the participants are four neu-
roscientists, one bioinformatics scientist, one computational biology scientist, and two
computer scientists. Six participants are familiar with the Allen Mouse Brain Common
Coordinate Framework [WDL+20]. As a side note, two neuroscientists have a red-green
deficiency, so it was also investigated whether this affects task performance with our
visualization.

Part (S1) consists of three configuration settings of a network covering structural connectiv-
ity over the whole brain, including (a) a directly projected layout, (b) Spatial-Data-Driven
Layouts without background, and (c) Spatial-Data-Driven Layouts with the background.
There are two click tasks per layout to find a particular node, resulting in a total of six
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tasks.
All participants did an excellent job as only one participant made one mistake, which
occurred when creating the graph directly from the projection (a). For configuration
(a) the median completion time was 31 seconds, for (b) 24 seconds, and for (c) 30.5
seconds, respectively. The processing time for (a) is longer than in (b), which is explained
by Ganglberger with the occlusions in the direct projection. He stated that in case (c)
the time increase compared to (b) could be caused by the colored background, which
increases visual complexity. One participant also pointed out that the multitude of strong
colors makes it difficult to read the connectivity of entities in the diagram.

In Part (S2) different settings for the visualisation were tested. It consists of four questions
about different levels of the hierarchy, two questions about varaying levels of background
detail (number of parcellations, determined by the Color Count parameter), three
questions about different Context Ratios for sub-networks, and additional questions about
their coloring. For the different hierarchy levels, sagittal and transversal perspectives,
and the three configuration settings were tested.
On average, six participants thought our approach made the most visual sense at the
coarse, medium, and detailed levels of the hierarchy, respectively. There was no clear
outcome regarding the number of parcellations, as participants tended to prefer the
extremes ,i.e., the lowest or highest level of background detail. Half of the participants
preferred to read sub-networks with the highest proportion of background, i.e., with
the highest Context Ratio. The two neuroscientists with color weaknesses preferred
simple sub-networks without any background. Seven out of eight participants preferred a
mixture of gray and colored backgrounds compared to full color images. The usefulness
of our visualizations was rated on a scale from one (poor) to five (good). The background
for spatial orientation was rated with a score of 4.05. When visualizing the graph in
Figure 7.4 to replicate the hand-crafted image from an existing publication [RN13] an
average score of 3.36 was received, which Ganglberger considered as quite promising.
In addition to these tasks participants were also asked for subjective feedback. Seven
participants are convinced that our visualisations are helpful for educational purposes,
while they are undecided about their use as figures in a paper.

In Part (S3) both different numbers of edges and different types of edge routings are
compared. The participants preferred a smaller number of edges for an increased clarity.
Five out of eight participants preferred the organic edge routing, as this layout allows for
easy tracking of the edges in a graph drawing due to the avoided overlap between edges
and nodes. The remaining two participants preferred the straight edges.

Evaluation Results of the Human Brain Network Visualization

The user study concerning the human brain networks was similarly designed to that of
the mouse brain. In total, Ganglberger and Wu recruited three female and three male
participants for this experiment. Among the participants are five postdoctoral researchers
and one principal investigator. They include two neuroscientists, one bioinformatics
scientist, one computational biology scientist, and two computer scientists. Half of the
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participants have already worked with the Allen Human Reference Atlas [DRS+16] and
are familiar with it. One of the participants has a red-green color weakness.

In Part (S1) all participants managed to identify the correct nodes. For each layout (a) -
(c) two tasks were specified and the time to solve them was measured. Configuration (a)
took a median of 43 seconds, configuration (b) 32 seconds, and (c) 30 seconds. Again
configuration (b) took less time than configuration (a). However, this time configuration
(c) provided a slightly quicker response than (b). Ganglberger stated that this could be
argued with the more spherical shape of the human brain compared to the one of the
mouse. Due to the higher density of regions, the displacement of the nodes is greater.
The contextual background supports the participant’s orientation to allocate specific
regions and connections rather than distracting them.

In Part (S2) the results were consistent with the mouse user study. Again, the usefulness
of our results was rated on a scale from one (poor) to five (good). Regarding the usefulness
of the contextual background, a score of 4.58 was received, which is even higher than
the one for the mouse brain network visualisation. Again, an approximated hand-crafted
image from a publication [GWC+12], shown in Figure 7.7, was evaluated. It received
an average score of 3.33. The score is a bit lower than for the mouse, which could have
two causes according to Ganglberger: (1) The number of participants was small, which
leads to no significant difference or (2) the complexity is higher in terms of the number
of nodes and edges in the human figure.

The results of Part (S3) are again consistent with those of the mouse user study. The
participants like visualisations with fewer edges and thus less visual clutter. Again, most
of the participants preferred organic edge routing.

General Feedback

In the user studies, participants also had the opportunity to give general feedback
[GWW+22]. According to Ganglberger, one participant stated "Good work with the
nice, comprehensive visualizations.". Another participant mentioned that "the honeycomb
parcellation is very nice, the visibility of the edges in the long-range is quite tricky.".
Another participant suggested to "summarize these arrows into one arrow, pointing to
some meaningful position in the target hierarchy, and only then branching out to each
target area separately.". Therefore an improvement would be to bundle edges of nodes
that project between two brain regions on a higher hierarchy level.

Although a user study for the D. melanogaster larval brain network was not conducted,
Ganglberger already received positive feedback from the neuroscientific community. This
encourages us to further develop our approach for the neural circuits, to be able to apply
it in the future to species that are neurobiologically very distinct from mammals.
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Mouse Human
Participants 8 (3 female, 5

male)
6 (3 female, 3
male)

Part (S1): Median Task Completion Time
(a) directly projected layout 31s 43s
(b) SDDa layout without background 24s 32s
(c) SDDa layout with background 30.5s 30s
Part (S2): Anatomical Context
preferred our approach over 2D projection on different
hierarchy levels (votes)

6 5

Number of Background Regions least | middle | most
(votes)

5 | 2 | 1 0 | 6 | 0

Number of Context Nodes least | most (votes) 2 | 6 1 | 5
Context Nodes background colored | gray (votes) 1 | 7 1 | 5
helpfulness of background scoresb 4.05 4.58
visual appealing of re-imagined figureb 3.36 3.33
Part (S3): Preferred Edge Routing (votes)
straight (clarity | paper | education) 3 | 3 | 3 2 | 2 | 2
organic (clarity | paper | education) 5 | 5 | 5 4 | 4 | 4
orthogonal (clarity | paper | education) 0 | 0 | 0 0 | 0 | 0
Part (S4): Demographics
female | male 3 | 5 3 | 3
postdoc | principal investigators 5 | 3 5 | 1
neurosci. | bioinf.| comp. sci. 4 | 2 | 2 2 | 2 | 2
red-green color weakness 2 1

aSDD = Spatial-Data-Driven b1 (poor) to 5 (good)

Table 7.1: Results of the user study of Part (S1) - Identifying Nodes/Connections; Part
(S2) - Visualization of Anatomical Context; Part (S3) - Edge Visualization; Part (S4) -
Demographic Data
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CHAPTER 8
Discussion

In the following section we recap how our requirements in Section 5.1 could be reached
with the help of the evaluation carried out. We also consider the usefulness of the visual
encoding, limitations, and possible further improvements of our approach.
The case studies in Section 7.1 show the relevance of our work in neuroscientific research
on different species. Their potential is highlighted by the results of our user studies
in Section 7.2. By evaluating the studies for two different species, mouse and human,
we can show that our methodology can be applied in a data-driven way and thus
species-independent (R2, R3).

8.1 Visual Encoding
Node-link diagrams are typical visualization approaches for neural networks in two-
dimensional space, but require an appropriate layout to display information. Surveyed
experts found our representations during the case studies intuitive for perceiving arrange-
ments of spatial relationships (R1).
In the studies our Spatial-Data-Driven Layouts show a positive effect on the perception
of brain networks. The experts were able to solve network-orientation tasks faster with
the help of our layouts than with a simple 2D projection of the 3D networks. Searching
nodes was simplified by the placement of the nodes in relation to each other, which is
necessary for the orientation within a graph (R4).
To further improve the representation of the anatomical context, we generate a convex
hull around the graph and compute a Voronoi diagram to divide the background into
major anatomical regions of the brain. These represent hierarchically higher regions and
visually group nodes belonging to the same region.
The user study showed that there is no clear preference for the coarseness of the back-
ground regions (determined by the Color Count parameter). The participants preferred
either the highest or the lowest number of regions, i.e., number of colors (R6). One issue
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resulted from the background obscuring the edges, which was identified in part (S1) of
the mouse user study. The users needed on average a little more time to find the regions
of interest if the visualization included the background.
For the visualization of sub-networks we created the option to include brain regions
that are not part of the sub-network in the background (defined by the Context Ratio
parameter). This preserves the overall shape of the brain and allows the user comparison
of different sub-networks and the complete network (R5, R7). The feature was considered
very useful, with a score of 4.05 for the mouse brain and 4.58 for the human brain, on a
scale from one (poor) to five (good). A higher ratio of contextual nodes was preferred, as
it resembles the shape of the network covering the entire brain. Displaying this additional
context in shades of gray (Gray-scale parameter set to contextGray) is an option to keep
the viewer’s focus on the actual sub-network. This partially colored version was preferred
by the majority of participants.

8.2 Limitations
Our approach is fully spatial-data-driven and does not require manual readjustment of
nodes. The parameters, such as the Context Ratio and the Color Count, influence the
anatomical context, but hardly the arrangement of nodes per se.
Our approach to lay out the network follows the idea of shape-based metrics by Eades et al.
[EHNK17]. They describe the design of experiments to fully validate shape-based metrics
to remain an open problem, as testing shape-based metrics is difficult. A significant
problem is to determine which tasks are appropriate for large-graph visualization. Further
difficulties arise because the results of such an experiment could be highly dependent on
the specific tasks used. This is also the case for Spatial-Data-Driven Layouts.
The arrangement of the nodes is influenced by the parameters of the force-directed
layout algorithm. During the development of our methodology, we realized that the
parameters strongly depend on the Parcellation-derived Connectivity and the size and
density of the graph. Choosing the set of parameters is an essential part of this work
and is crucial for the resulting visualizations. Since the networks differ strongly between
the species and the perspectives they have to be chosen for each species-perspective
combination to achieve good results. This is rather time-consuming, since the multitude
of parameters has to be combined and the adjustment of individual parameters is not
always intuitive. Furthermore, due to the fixed set of layouting parameters and the
data-driven approach, sub-optimal results may be produced for certain networks. A
straightforward solution, that we also applied to facilitate the search for a suitable set of
parameters, is to interactively control the parameters with the help of sliders, as seen in
most applications for force-directed layouts. This is easily implemented allowing the user
to adjust the parameters if the result is indeed not satisfactory.
One disadvantage of the CoSE-Bilkent implementation is that it does not consider the
weighting of the edges. Although the data is available we had to work around this
drawback in our approach by limiting the number of connections per node to a small
fraction by choosing the strongest ones. This, obviously, leads to a loss of information
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that could affect the result negatively.
The application of the Aesthetic Layout is only helpful if the underlying network is
dense and requires strong forces in the main layout step. The Aesthetic Layout can even
disturb some arrangements, for example very flat and distinctive shapes like in the D.
melanogaster larval brain. The number of iterations or if it should be applied at all
has to be evaluated for each new species or perspective, which could be added in the
future. Another requirement for applying Spatial-Data-Driven Layouts is the availability
of brain hierarchy data as well as the Parcellation-derived Connectivity, which needs to
be calculated for a new species.
The performance of the algorithm that draws the Parcellation Background (as described
in Section 6.8) has potential to be improved. We decided to use only three canvases,
but this requires relatively large data structures, since a list of all the Voronoi cells for
each parcellation in the Color Canvas and Parcellation Outline Canvas, and for each
hemisphere in the Hemisphere Outline Canvas was used to create the drawing. A more
performant solution could be to save per parcellation and hemisphere only the cells that
are actually in it and then draw these cells on a separate canvas. This would result in
a higher number of canvases (one per parcellation or hemisphere), but with far fewer
iterations for drawing the cells themselves.

8.3 Outlook
Our studies have shown that the generated figures by Spatial-Data-Driven Layouts were
well received by the community. Spatial-Data-Driven Layouts can be used to approximate
hand-crafted illustrations. Compared to creating such illustrations by hand, rendering a
network with Spatial-Data-Driven Layouts takes only a couple of seconds. Because our
work is considered suitable for educational purposes, it is valuable not only to domain
experts, but also to their audiences to gain an understanding of brain networks that
would otherwise be difficult to grasp.
Integration of interactivity could bring further benefits in direct neuroscience research
beyond print media. By giving the user the possibility to change the layouting parameters
to a certain extent, they can further customize the visualization to their needs. Another
interactive approach could include extending or collapsing regions and parcellations. This
functionality is already available as Cytoscape.js extension [DKS+18]. Another step could
be to interactively change the hierarchy level to determine the level of detail of the network
visualization. In terms of connectivity, one could interactively filter certain connections or
bundle connections between hierarchy levels to focus on the essentials and reduce clutter.
Highlighting the flow of information to and from a node could also be a helpful feature to
support brain-network research. Other data, such as gene expression, could be overlaid to
provide additional information to enable novel visual-analysis workflows. As the scientific
field of connectomics is developing rapidly, the data quality is also increasing. The data
used in our tool can be easily updated to provide even better results in the future. At the
time of the user study, no data on neighborhood-based Parcellation-derived Connectivity
for the human-brain network was available, so it was not possible to evaluate the results.
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Meanwhile, recent publications released voxel-level common coordinate frameworks with
region-level annotations for the human brain [AMBZ20, WDL+20], which would be
suitable for our application in the future.
Regarding D. melanogaster larval-brain networks, our presented visualizations of the
neural circuits are the first step in this direction. Further developments of our methodology
to include markers for input and output locations or other encodings of neurons spanning
multiple brain regions could make our approach a valuable addition to the currently used
circuit diagrams.

Finally, our approach can be used not only for the application to spatial brain networks.
In principle, three-dimensional networks from different domains can be flattened to two
dimensions. Even without a hierarchy within the network and thus without rendering any
background as context, nodes can be layered with respect to their spatial relationships
to provide spatial orientation.

8.4 Conclusion
We believe that Spatial-Data-Driven Layouts are helpful in neuroscience, not only to
visualize neuronal brain networks, but also to give new insights for varying analysis goals.
It might replaces the tedious, artistic creation of graphics and can be applied in only
a couple of seconds on brain networks of different species. In the future the tool can
be used for other species by generating a single set of base parameters for the layout
process. Using interactive elements, details could be additionally adapted to the needs of
neurobiologists
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Appendix

Anatomical Layout Parameters
Mouse Brain Network
Transversal Perspective

{
name: "cose-bilkent",
nodeDimensionsIncludeLabels: true,
randomize: false,
numIter: 2500,
tile: false,
animate: false,
nodeRepulsion: 4000,
idealEdgeLength: 45,
edgeElasticity: 0.0001,
gravity: 2,
gravityRange: 5,
initialEnergyOnIncremental: 0.2,

}

Sagittal Perspective

{
name: "cose-bilkent",
nodeDimensionsIncludeLabels: false,
randomize: false,
numIter: 2500,
tile: false,
animate: false,
nodeRepulsion: 1000,
idealEdgeLength: 10,
edgeElasticity: 0.03,
gravity: 0.5,
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gravityRange: 3,
initialEnergyOnIncremental: 0.2,
nestingFactor: 2,
gravityCompound: 1.5,
gravityRangeCompound: 1.2,

}

Human Brain Network

Transversal Perspective

{
name: "cose-bilkent",
nodeDimensionsIncludeLabels: false,
randomize: false,
numIter: 2500,
tile: false,
animate: false,
nodeRepulsion: 4000,
idealEdgeLength: 60,
edgeElasticity: 0.001,
gravity: 0,
gravityRange: 0,
initialEnergyOnIncremental: 0.3

}

Sagittal Perspective

{
name: "cose-bilkent",
nodeDimensionsIncludeLabels: false,
randomize: false,
numIter: 2500,
tile: false,
animate: false,
nodeRepulsion: 800,
idealEdgeLength: 12,
edgeElasticity: 0.1,
gravity: 2,
gravityRange: 1,
initialEnergyOnIncremental: 0.5,
nestingFactor: 1,
gravityCompound: 1.5,
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gravityRangeCompound: 1.2
}

D. Melanogaster Larval Brain Network

Transversal Perspective

{
name: "cose-bilkent",
nodeDimensionsIncludeLabels: false,
randomize: false,
numIter: 2500,
tile: false,
animate: false,
nodeRepulsion: 10000,
idealEdgeLength: 500,
edgeElasticity: 0.1,
gravity: 0.01,
gravityRange: 0.1,
initialEnergyOnIncremental: 0.01,

}

Sagittal Perspective

{
name: "cose-bilkent",
nodeDimensionsIncludeLabels: false,
randomize: false,
numIter: 2500,
tile: false,
animate: false,
nodeRepulsion: 10000,
idealEdgeLength: 200,
edgeElasticity: 0.01,
gravity: 0.01,
gravityRange: 0.1,
initialEnergyOnIncremental: 0.06,
nestingFactor: 0.5,
gravityCompound: 1,
gravityRangeCompound: 1,

}
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Aesthetic Layout Parameters
{

name: "cose-bilkent",
nodeDimensionsIncludeLabels: false,
randomize: false,
numIter: 2500,
tile: false,
animate: false,
nodeRepulsion: 1000,
idealEdgeLength: 20,
edgeElasticity: 0.03,
gravity: 2,
gravityRange: 1,
initialEnergyOnIncremental: 0.05,
nestingFactor: 1.5,
gravityCompound: 0,
gravityRangeCompound: 0,

}
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