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Abstract: This study reflects on the quality aspects of urban meteorological time series obtained
by crowdsourcing, specifically the air temperature and humidity data originating from personal
weather stations (PWS) and the related implications for empirical and numerical research. A number
of year-long hourly-based PWS data were obtained and compared to the data from the authoritative
weather stations for selected areas in the city of Vienna, Austria. The results revealed a substantial
amount of erroneous occurrences, ranging from singular and sequential data gaps to prevalent faulty
signals in the recorded PWS data. These erroneous signals were more prominent in humidity time
series data. If not treated correctly, such datasets may be a source of substantial errors that may
drive inaccurate inferences from the modelling results and could further critically misinform future
mitigation measures aimed at alleviating pressures related to climate change and urbanization.

Keywords: data quality assessment; crowdsourced data; meteorological data; personal weather
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1. Introduction

In most cities, the existing authoritative observational networks and surveying cam-
paigns are not sufficient in providing comprehensive information on the complex mor-
phologically heterogeneous built environment and the related non-linear developments
at the decision scale [1,2]. This is namely due to a low spatial density of individual sta-
tions integral to these networks and a limited amount of sensors being installed at these
individual monitoring locations. Hence, the resulting low amount of meticulous ground-
truth data is severely constraining the collective capacity to properly identify and quantify
emerging issues within urban environments [3]. The extensively documented variability
of conditions within urban environments further exacerbates the problem [4–9]. For in-
stance, it is known that the local atmospheric and ambient conditions may vary within the
distance of a couple of streets, which is driven by the unique composition and dynamics
of the urban fabric. Specifically, the unique urban composition may induce noticeable
differences in air temperature, wind speed, and relative humidity, whereby the unique
urban dynamics (e.g., traffic flow and amount of waste heat sources) may affect higher
pollutant emissions leading to poor air quality [5–7,9]. Wong et al. [5] investigated the
street-level microclimate variations in a small urban community in Hong Kong and noted
an average variation of air temperature across the street network in the range of 2.2 ◦C
and 2.8 ◦C for summer and winter, respectively. Jin et al. [9] constructed a detailed spatial
map of air pollution concentrations across the city of Bogotá and documented a distinct
intra-urban variation within neighbourhoods of each district of the city, where the median
PM2.5 yearly concentration level (27.47 µg/m3) at the most polluted district was more than
twice the median (13.18 µg/m3) of the least polluted one. Thus, with a limited amount
of observational stations and respective in situ data, we cannot obtain a representative
construct of environmental conditions within a city. Consequently, current observational
records are seen as discontinuous, incomplete, and not comprehensive enough to support
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enhanced decision-making. This greatly hinders the potential for harnessing these data for
optimization and regulation of urban operational functioning, design, and planning in line
with the Sustainable Development Goals and the European Green Deal.

At the same time, the past decade has seen a steady increase in crowdsourced data
collection practices worldwide. This resulted in the abundant availability of diverse data
essential for tackling climate and environmental challenges, which, not surprisingly, has
already gained considerable attention in research [10–14]. In general, these data are seen
as essential for allowing systematic inference of new knowledge, especially in regions
where conventional observations are sparse or completely lacking. Hence, due to the
high spatial density of such individual data collection points, we could, in principle,
generate a highly needed dataset representative of the urban environment with a high
spatial-temporal resolution. Such a dataset would be indispensable to the modelling
community as it would provide invaluable means to set up and later evaluate numerical
models effectively [15]. For instance, numerical building performance simulations are
frequently initiated using standardized weather files that provide an unrealistic portrayal
of intra-urban meteorological conditions [16]. Such a practice was proven to be a source
of substantial modelling errors that may drive inaccurate inferences from the modelling
results [17].

However, it is equally known that the data obtained by crowdsourcing are, in general,
less reliable than authoritative observations. They may be prone to errors due to potentially
incorrect positioning of the sensors or sporadic sensor’s faulty functioning, which is often
not observed nor amended in a timely manner [11,12,14,18,19]. Oftentimes, it may be the
case that installed sensors do not abide by the international monitoring procedures and
requirements for meteorological instruments, as described by the World Meteorological
Organization (WMO) [20]. This may be either due to a lack of knowledge and awareness
of these procedures or other constraints, such as a physical lack of space to mount the
sensors in an optimal way to eliminate any influencing factors (e.g., artificial waste heat
and humidity sources and physical obstructions to the airflow). A number of studies
discussed the data quality problematics of crowdsourced data, especially related to the data
stemming from personal weather stations (PWS) and offered comprehensive correction
methods to amend these issues [11,12,14,18,19,21]. For instance, the work of Nipen et al. [18]
discussed the challenges that arise when integrating citizen observations into operational
systems, further elaborating robust quality control procedures used to filter out unreliable
measurements. Specifically, they elaborated on the spatial test (e.g., “buddy check”, spatial
consistency check) that compares lone stations against independent information (e.g., a
neighbouring observation) used to validate them. Likewise, Alerskans et al. [21] discussed
the specifics of spatial quality control methods and how to optimize them for a more
reliable analysis. However, in contrast to the above-mentioned focused discussions and
investigations that portray robust data quality methodologies, a bulk of other related work
on data quality issues often reflects on aspects that are observed on a level of descriptive
statistics (e.g., standard deviation, min-max values, and frequency distribution), while
neglecting in-depth observations of the fine-grained temporal evolution of singular or
sequential erroneous signals and their implications for empirical and numerical research.

In an effort to address these knowledge gaps, our study aims at answering the follow-
ing research questions:

• What is the general quality of raw (i.e., unmodified, uncorrected) crowdsourced
meteorological data retrieved from the PWS network?

• What is the degree of potential departure of the PWS signal from the authoritative
measurements?

• What is the degree of potential deviation between individual neighbouring PWS?
• What are the implications of using the potentially faulty PWS data for empirical and

numerical research?

To do so, we obtained a number of year-long hourly-based time series on air tempera-
ture and humidity from representative PWS found in close vicinity of in situ authoritative



Sustainability 2023, 15, 6941 3 of 18

weather stations operated by GeoSphere Austria, the federal institute for geology, geo-
physics, climatology, and meteorology [22]. Our study further relied on the application
of a comprehensive visual analytics tool developed at our institute, which is equipped
with tailored dashboards suited for an in-depth structural analysis and quality check of
high-dimensional time series data [16,23].

2. Materials and Methods
2.1. Data Acquisition

The hourly-based meteorological data originating from the authoritative observational
network and representing the year 2022 are acquired from the open data catalogue managed
by GeoSphere Austria [24]. These data depict three morphologically distinct urban locations
(Innere Stadt, Hohe Warte, and Donaufeld), as illustrated in Figure 1. These are three
out of five urban and peri-urban locations in Vienna that are presently being equipped
with monitoring sensors and for which there exist the corresponding PWS data. Many
meteorological parameters are monitored at each location; however, we are currently only
interested in air temperature and humidity records due to a limited number of parameters
measured by the PWS. With respect to the quality aspects, the installation procedure of
employed individual semi-automated weather stations strictly follows the WMO standards.
The records from these stations are regularly checked for plausibility and completeness,
whereby any initial correction takes place in real-time and any implausible values are
immediately deleted from the data record [25]. Hence, we can assume these data conform
to high-quality standards. To further support this position, all products and services offered
by GeoSphere Austria have been officially certificated according to the ISO 9001 standard,
which sets out rigorous criteria to ensure high-quality management standards of all related
processes and resources [26].
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Figure 1. The selected urban locations in the city of Vienna, Austria, with positions of authoritative
(black) and PWS stations (pink). The urban base map was derived from Mapbox maps. We can
further observe a highly dense built composition in Innere Stadt, in contrast to the open arrangement
of built structures in the other two locations.

The hourly-based crowdsourced data originated from Netatmo’s PWS, a commercially
available monitoring system developed for the use of the general public [27]. For the
purpose of this paper, we are interested in data originating from Netatmo’s outdoor sensing
module capable of measuring air temperature and humidity. Once the module is bought,
users may consult the recommendations for the physical installation offered by Netatmo,
which stress the importance of abiding by the WMO standards. However, we may assume
that it is up to a personal user’s preference if they actually follow such recommendations.
Table 1 provides an overview of selected stations along with their descriptive metadata.
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Table 1. The overview of authoritative stations and PWS used for the study.

Authoritative Stations Personal Weather Stations (PWS)

Location Latitude,
Longitude

Elevation
[m] Location Short Name Latitude,

Longitude
Elevation

[m] PWS ID

Innere Stadt
48.198334,
16.366945 177

Margaretenstraße IS_01 48.197665,
16.366927 187 70:ee:50:02:a9:68

Margaretenstraße IS_02 48.195364,
16.363465 184 70:ee:50:05:0a:08

Mühlgasse IS_03 48.196426,
16.364049 174 70:ee:50:00:c1:9c

Rechte Wienzeile IS_04 48.200000,
16.366699 174 70:ee:50:04:fd:26

Hohe Warte
48.248611,
16.355833

198

Formanekgasse HW_01 48.245353,
16.351419 192 70:ee:50:5f:61:72

Gallmeyergasse HW_02 48.245697,
16.358777 189 70:ee:50:2c:89:cc

Hohe Warte HW_03 48.248461,
16.356298 202 70:ee:50:3a:35:a2

Klabundgasse HW_04 48.246181,
16.357588 186 70:ee:50:13:51:5c

Donaufeld
48.257221,
16.431389

160

Doeltergasse DF_01 48.256355,
16.437098 156 70:ee:50:03:81:02

Erna-Musik-Gasse DF_02 48.256376,
16.427122 158 70:ee:50:96:cf:02

Flandorferweg DF_03 48.258248,
16.432134 162 70:ee:50:2b:27:3a

Thonetgasse DF_04 48.256573,
16.434137 159 70:ee:50:00:63:84

The general Netatmo data repository may be accessed publicly via an API, and records
are freely downloaded and processed for future analysis [28]. Using the available Netatmo
Weathermap, we can also visually inspect which data collection points (i.e., PWS) are
publicly available for any given location. Once identified, the respective records of these
data collection points may be retrieved using their unique stations’ IDs along the individual
sensing module ID, whereby the desired data resolution, data parameter, and a specified
timeframe should also be provided. The response is provided in a json format, which
can be further processed with a number of applications. We have used Microsoft Excel
software (version 2016 64-Bit Edition) to bring the data in a format compatible with the
visual analytics tool used for data structure and quality assessment.

2.2. Towards a Comparative Analysis

For each of the three stations from the authoritative observational network, we have se-
lected four corresponding PWS that further conform to the principles of the well-established
Local Climate Zone (LCZ) classification system [29,30]. Specifically, the LCZ classification
system denotes 17 distinct regions with relatively homogeneous surface cover, structure,
material, and human activity, where characteristic atmospheric conditions (for that par-
ticular LCZ class) may be expected within a radius between 200 to 500 m. Hence, using
the respective authoritative station as an epicentre, we have selected four complementary
PWS falling within the 400 m radius. Figure 1 illustrates the spatial positioning of selected
authoritative and PWS stations. To further identify which location is representative of
which LCZ class, we have used the freely available global map of Local Climate Zones that
provides standardized and harmonized data of all cities while capturing the intra-urban
heterogeneity across the whole surface of the earth [31]. The global LCZ map was clipped
for the selected locations to derive the spatial distribution of corresponding LCZ classes
within the targeted radius of 400 m. We have observed a predominantly uniform allocation
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of specific LCZ classes across the respective locations, ranging from highly dense (LCZ 2)
for Innere Stadt to a rather open arrangement of built structures (LCZ 6 and 8) for Hohe
Warte and Donaufeld locations (Figure 2).
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Figure 2. The spatial distribution of respective LZC classes for the selected urban locations in the
city of Vienna, Austria, is derived from the global LCZ map, which is offered under the Creative
Commons Attribution 4.0 International license [29].

The conceptualization of employed comparative analysis of the acquired authoritative
and PWS meteorological data was based on well-established spatial methods that focus
on the detection of inconsistencies between neighbouring stations [18,19,32]. This method
is often dubbed a “buddy check”, which denotes a comparison of an observed value (in
this case, a respective PWS data point) against another “buddy” observation (in this case, a
respective data point from an authoritative observation) that is within a 3 km radius and
have elevations within 30 m [18]. The process implies that an observation is removed if its
deviation from the average is more than twice the standard deviation of the observations in
the neighbourhood. This is especially fitting for use cases that tackle the same atmospheric
phenomena. Further complying with the LCZ classification system, the selected radius of
400 m in this study is expected to derive a finer comparison.

It should be further noted that, in contrast to the existing vast scientific body of work
that thoroughly covers methodologies for quality control of meteorological data, as noted
at the outset, in our work, we aimed to highlight quality issues that are integral to the
crowdsourced PWS data and the resulting implications that arise when such data is used
for empirical research and numerical simulation, specifically when data quality issues are
not being resolved. We have also noted that related work oftentimes does not focus on all
nuances of data quality issues. Hence, our intention here is to deepen the discussion in
this regard.

2.3. Data Exploration

Data exploration was carried out using a visual analytics (VA) system developed at our
institution [16,20]. The system offers meticulously designed analytics dashboards for an in-
depth structural analysis and quality check of time series data. For instance, we may inspect
the completeness of time series data (i.e., detection of missing values and missing periods),
the accuracy of time series data (i.e., detection of duplicate timestamps), or carry out an
anomaly detection (i.e., detection of outliers or unusual sequences of identical values).
These insights are offered within a composite tabular visualization further enriched with
the frequency of singular events (0–100%) and temporal distribution with monthly and
yearly allocation and spatial positioning (i.e., when in time did a particular event occurred),
as seen in Figure 3. To allow for intelligent visual identification of potential missing values,
the respective temporal gaps are highlighted directly within the line plot depicting a
temporal distribution of a selected time series. The alternative stacked visualization of
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selected time series may be further used for an intra-comparison of temporal discrepancies
of different time series.
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3. Results
3.1. On the Quality of Raw PWS Data

Once the acquired raw time series data were inspected visually using the VA system,
the identification of existing inconsistencies was instantaneous. It should be noted that
here, we are presenting the temperature time series only, as both meteorological parameters
are measured by the same sensing module; hence their recording cycles would be the
same. A comparative assessment of all PWS data streams revealed that many PWS show a
discrepancy in length relative to the corresponding authoritative observations (Figure 4).
In some cases, this discrepancy was more prominent, such as in the case of stations HW_03
and DF_02 (Figure 4). This indicates that there are a number of time gaps which are not
taken into account while retrieving the data from the Netatmo data repository. Namely,
once the data is retrieved from the respective data repository, the dataset is provided as
a continuous sequence of data points where any potential gaps are omitted by providing
such a “compressed” dataset. Furthermore, there is no indication of the actual temporal
placement of integral time gaps nor the frequency of their occurrence, which results in
notable misalignment in the temporal distribution of records when compared to the corre-
sponding authoritative observations (Figure 5). Oftentimes it would appear as if there were
inversed trends and inconsistencies in peak values, which would significantly impact any
inferences drawn from such data. We may further observe the irregularities in the amount
of gaps present in each of the PWS datasets (Figure 4). This is mostly dependent on the
individual running procedures of the PWS and the potential defects in running regimes.
Thus, the integrity of any future investigation relying on the PWS data would also be highly
dependent on the choice of the PWS used for the purpose.
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originating from the PWS and the respective authoritative observations over three urban locations:
Innere Stadt (top), Hohe Warte (middle), Donaufled (bottom). The respective authoritative observa-
tions are shown as the first liner plot in all individual graphs. The respective discrepancy in length
observed for the PWS time series is marked in red.
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Figure 5. A portrayal of a temporal misalignment of temperature records and the noted inversed
trends between the selected PWS (in red) and the respective authoritative station (in grey).

3.2. On the Discrepancies between PWS and Authoritative Data

In the following step, all PWS data was corrected in order to account for the existing
time gaps. We may now visually inspect all the individual occurrences of respective gaps,
whereby there seems to be no particular regularity or periodicity in their manifestation
across different PWS (Figures 6–8). As noted previously, this is mostly due to the individual
running regimes of each PWS. As these devices are essentially wireless and hence, their
functioning is dependent on the established Wi-Fi connection; any alteration in this con-
nection would result in an interruption of operation. In some instances, these gaps appear
to be minor; thus, a reconstruction by interpolation or other methods may be possible.
However, in other cases, the gaps are in order from one week to a couple of consecutive
weeks, which makes the data reconstruction unfeasible. One specific case is the PWS DF_02
from location Donaufeld (Figure 8), where the station seems to be installed at the beginning
of December 2022; hence such data would be unusable for any pertinent exploration.
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Figure 8. An overview of corrected PWS data for location Donaufeld depicting the actual placement
of temporal gaps (bottom), along with completeness metrics (top).

To allow for a deeper inspection of the PWS time series, we derived respective devia-
tions from the corresponding authoritative time series, where the authoritative time series
is observed as a baseline. Hence, whenever a computed deviation equals a positive value,
the observed PWS signal is higher than its corresponding authoritative time series and vice
versa. The respective equation is as follows:

∆pi = pPWS
i − pAO

i, (1)
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where ∆pi denotes a deviation of a concerned meteorological parameter, in this case, tem-
perature or humidity, for the time step i, and pPWS

i and pAO
i denote PWS and authoritative

records for the same time step i, respectively.
Looking at the computed deviations, we can observe the tendency towards both the

overestimation and the underestimation of recorded PWS values for temperature and
humidity records (Figures 9–11). For temperature data, the maximum positive deviation
was 25 ◦C, and the maximum negative deviation was −11.5 ◦C across all the PWS for
all three locations. For humidity data, the maximum positive deviation was 59%, and
the maximum negative deviation was −39%. In general, we cannot observe a particular
regularity in regard to the temporal distribution of such events, as the existing deviations
appear to be equally spread out over the entire year. However, there may be an indication
of a possible tendency towards more pronounced deviations during warmer months, which
is more distinct in the case of temperature time series.
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However, it should be noted that this particular assessment relied on the authoritative
data sources being taken as the absolute possible truth in terms of quality standards. Such
a position resulted from the previously discussed rigorous data quality control procedures
employed at GeoSphere Austria, further reinforced by the ISO 9001 certification. However,
in order to conform to the scope of scientific objectivity, we would like to propose a possi-
bility that there may still be a certain level of uncertainty (i.e., the “error bar”) attributed to
the authoritative data, which has not been accounted for in this study.

Looking at the frequency of all deviation events in temperature time series (see his-
togram plots in Figures 9–11), deviations between −5 ◦C to 5 ◦C are very prominent, with
observed left-skewed distribution denoting a general tendency towards overestimation of
values. Furthermore, we can observe an uneven development of deviations across indi-
vidual PWS. This is especially evident in the case of PWS IS_02, where the overestimation
of values reaches 25 ◦C. In the case of humidity data, a strong shift towards the generally
higher values is even more evident across all PWS, which is particularly pronounced in lo-
cation Hohe Warte for PWS HW_02 (Figure 10). Some exemptions to this case are observed
for PWS IS_02 and DF_03, where the extent of values goes over the negative range denoting
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the underestimation of records. In addition, we may observe the highest clustering of
deviations in the range of 0% to 20% for humidity values.
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Figure 11. Temporal distribution of computed deviations for temperature (top) and humidity
(bottom) for location Donaufled: respective time series are given on the (left) side of the figure,
and the frequency of event distribution is given on the (right) side of the figure.

3.3. On the Discrepancies between the Neighbouring PWS Data

Looking at the individual PWS time series and how they correlate to one another,
we may observe notable discrepancies in the case of both temperature and humidity
values (Figures 12 and 13). Although the distinct temporal distribution curves across all
time series appear to conform to an overall comparable progression (see Figures 6–8), a
myriad of individual time-based events significantly deviate from this progression. In
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regard to the temperature time series, such a departure is the most evident for the PWS
originating from the location Innere Stadt (Figure 12). Namely, one pronounced outlier
is the PWS IS_02 where the temperature values appear to be generally higher than for
the remaining neighbouring PWS. This can be observed in the boxplot in Figure 12 but
also in the complementary frequency plot where the normal distribution of IS_02 data
denotes a flatter curve with a prominent shift towards a higher range. We can also observe
rather unrealistic values recorded at IS_02, where the temperature maximum reaches 50 ◦C.
Furthermore, at the location Donaufeld, a slight shift in the normal distribution for PWS
DF_03 in relation to the other neighbouring PWS may be observed, whereby DF_01 and
DF_04 appear to correspond well to one another. It should be noted that we took into
account only the complete records of three PWS from Donaufeld for this investigation and
excluded the PWS DF_02, for which there is only one month of data. The temperature
records for PWS in the location Hohe Warte appear to correlate the most with one another.
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Figure 12. Monthly distribution of temperature data spread across neighbouring PWS and their
respective locations: a combined comparison of data distribution using the boxplot visualization (left),
along with the frequency of event distribution (right).

The visual analysis of the humidity data revealed even more pronounced discrepancies
across all time-series and locations (Figure 13). As noted above, the general temporal
progression appears to be consistent across time series (see Figures 6–8); however, a clear
misalignment of normal distribution curves is observed as a common trait. This may
indicate either a relative shift towards a higher or a lower range (see frequency plot in
Figure 13). If we look at the records from PWS IS_02, for example, in contrast to the above
observations, it appears that there is a prominent spread over a lower range in the case
of humidity data. This namely means that the temperature sensor in PWS IS_02 tends to
overestimate, whereby the humidity sensor may be more inclined towards underestimation
of recorded values relative to the other neighbouring PWS. The highest shift in the normal
distribution relative to the neighbouring PWS is observed for PWS originating from location
Donaufeld. In general, in the case of humidity data a significant offset between individual
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PWS is quite prominent, which diverges from the temperature observations where the
records were found to correlate well. The same may be concluded for PWS at locations
Hohe Warte. Hence, we again observed a conflicting temporal behaviour of data recorded
by temperature and humidity sensors stemming from the same module.
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4. Discussion
4.1. Summarized Observations

When analysing the raw PWS data, we observed a notable discrepancy in length for
the retrieved time series data relative to their corresponding authoritative time series. This
denotes a critical issue of potential oversight of existing data gaps if not amended prior to
any further analysis. As these time series are retrieved as a “compressed” sequence of data
points with no temporal indication of such integral data gaps, the resulting misalignment
with the reference data, in our case, the authoritative observations, is an unavoidable
consequence and, hence, has to be properly regarded.

Once the data were corrected for the above-mentioned inaccuracies, we investigated
the apparent departure of PWS data from the corresponding authoritative observations.
Our analysis revealed a substantial amount of erroneous occurrences, ranging from singular
to sequential events. Namely, a prevailing tendency towards both the overestimation and
the underestimation of data was observed, with a noticeable variability in their distribution.
However, a general tendency towards higher values in PWS was recurrent in all locations,
whereby such a tendency was particularly visible for the humidity time series.

There are equally notable discrepancies between the neighbouring PWS time series
and the data retrieved from different points within the same urban domain. Although
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a comparable progression of distribution curves was observed, we could not establish a
particular rule for the apparent faulty signals. Nevertheless, for both temperature and
humidity data, a noteworthy misalignment of individual frequency distribution curves are
observed in respect to both the shape and the positioning of the curve. This suggests either
a relative shift towards a higher or a lower range, thus denoting either an overestimation
or underestimation of values. In some instances, given the potential clustering of some
PWS curves, we could indicate whether there is a shift to the lower or a higher range.
Regardless of the specifics about the nature of the departure, the critical remark is that there
is a significant departure, which denotes conflicting information stemming from the PWS
modules.

4.2. Comparison over Multiple Years

In order to validate that the above-summarized observations are not the isolated
instance that may be solely attributed to a certain year, a multiannual analysis over 4 years
has been carried out. Figure 14 illustrates an exemplary case that focuses on the temporal
distribution of temperature data for a selected PWS (IS_03) within the location Innere
Stadt. First, the case of data gaps may be observed for each year with their temporal
placement following a rather irregular behaviour. Second, the amount of respective data
gaps and their sequential duration differs from year to year. Lastly, looking at the computed
deviations, further irregularities may be observed in terms of their intensity and variability.
In conclusion, the data quality notions discussed in this paper should not be attributed to a
single year, rather, they are of a much broader character.
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Figure 14. Multiannual temporal distribution of temperature data for the location Innere Stadt
illustrations a selected PWS (IS_03) against respective authoritative observations (middle) and
computed deviations (bottom), along with a tabular visualization of completeness metrics (top).

4.3. On the Implications of Using Faulty PWS Data for Empirical Research and
Numerical Simulation

Given the above discussion, it is sensible to allude to a number of related implications
when using potentially faulty PWS data for empirical research and numerical simulation.
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First, if no attention were given to data quality assessment, we would not only rely on
incomplete raw data but also on integral conflicting trends and temporal developments
(relative to the authoritative observations), which would insinuate unrealistic seasonal and
diurnal progressions of concerned meteorological parameters. Second, as the corrected
progression of PWS data still unveiled a fluctuating alignment to the authoritative observa-
tions, this further indicates possible future implications for simulation-supported system
performance assessments when such data would be used as external boundary conditions.
Specifically, this would result in potential oversizing or under-sizing of internal systems,
such as the HVAC systems in building structures, or poor estimation of indoor building
heating and cooling regimes. Furthermore, implications are equally critical for empirical
research as the faulty meteorological characteristics would critically misinform future miti-
gation measures aimed at alleviating pressures related to climate change and urbanization.
Lastly, given a considerable degree of variation in the distribution of meteorological param-
eters between individual PWS stemming from the same location, selecting a representative
weather station with the most realistic data poses yet another level of concern.

4.4. Replication Potential to Other Cities

Due to the vast international geospatial coverage of the Netatmo PWS network, the
replication potential of the introduced assessment methodology is generally large. How-
ever, one factor limiting direct transferability may be the unavailability of the authoritative
data sources at chosen localities. This especially concerns data-sparse geographical regions,
such as the Southern Hemisphere, as highlighted in the data gap report drafted by the
ConnectinGEO project that looked at the existing data gaps in European in situ Earth Obser-
vation networks [33]. Led by these dire information needs, European Commission had set
itself on a path to remedy these constraints for future applications through a widespread
initiative for greater availability of qualitative and quantitative in situ environmental data
contributing to the in situ component of existing observation systems. However, as this
is still an ongoing and time-intensive process, the replication potential of the introduced
assessment methodology in current data-sparse regions remains limited for the time being.

4.5. Future Prospects for Correcting Faulty Data

In our current application, we have employed a number of measures to assess the data
quality of PWS time series data in an effort to determine the degree to which these data
are accurate, complete, and consistent. Specifically, we performed a completeness check
(i.e., detection of missing and incomplete data values), consistency check (i.e., checking
for any sudden or unexpected changes in the data by comparing the data with external
sources), outlier check (i.e., detection of values well above or below a certain threshold),
and we have inspected the data for tendencies and trends. These checks were supported
by a dedicated visualization system that helped us carry out a visual detection of existing
faulty signals in selected PWS time series.

Once these faulty signals are identified, the following step would be to create a rea-
sonably accurate dataset where any unreliable data points are removed. One possibility
would be to apply a “buddy check” approach [18], which has been discussed in Section 2.2.
The process implies that a data point is removed if its deviation from the average is more
than twice the standard deviation of the observations in the neighbourhood. To test this ap-
proach, we have computed the respective deviations for each PWS and their neighbouring
authoritative stations, whereby these were computed on a daily basis. Specifically, for each
day, each hourly data point in the PWS time series was compared to the respective average
over the entire day, and this difference was further compared to the doubled standard
deviation of the neighbouring authoritative station computed on the same daily basis.
Figure 15 illustrates the resulting tolerance violation, specifically the visualization of those
instances where the threshold with respect to the standard deviation is breached for all
PWS stations. These violations are visualized every 10 days of a month, whereby light
orange rectangles in Figure 15 denote the presence of a tolerance violation for that 10-day
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window, and darker orange lines denote the amount of individual tolerance violations per
day. Table 2 provides an overview of the total number of violation instances for each PWS
and their respective parameters. Such computations are expected to help us confirm or
reject a particular observation and derive a more reliable dataset for future applications.
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Table 2. The overview of the total number of violation instances for PWS used for the study.

Location Short Name PWS ID Total Number of Tolerance
Violations for Temperature Values

Total Number of Tolerance
Violations for Humidity Values

Innere Stadt

IS_01 70:ee:50:02:a9:68 1133 885
IS_02 70:ee:50:05:0a:08 1534 1496
IS_03 70:ee:50:00:c1:9c 1098 583
IS_04 70:ee:50:04:fd:26 1581 1019

Hohe Warte

HW_01 70:ee:50:5f:61:72 823 838
HW_02 70:ee:50:2c:89:cc 372 158
HW_03 70:ee:50:3a:35:a2 714 607
HW_04 70:ee:50:13:51:5c 1016 373

Donaufeld

DF_01 70:ee:50:03:81:02 1011 863
DF_02 70:ee:50:96:cf:02 5 1
DF_03 70:ee:50:2b:27:3a 912 95
DF_04 70:ee:50:00:63:84 1217 363

5. Conclusions

This contribution addressed a number of issues indicating the importance of data
quality assessment of crowdsourced meteorological data. For the purpose of our study,
we used year-long temperature and humidity data retrieved from Netatmo’s personal
weather stations network from selected urban locations in the city of Vienna, Austria,
and further compared these to the in situ authoritative observations. We first explored
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raw PWS data, which have not been corrected for any potential deficiencies, and noted
some critical aspects related to the integral data gaps. However, even when corrected for
these gaps, the PWS data still displayed a prominent departure from in situ authoritative
observations expressed as overestimation or underestimation of hourly-based records. The
degree of such departure varied across the study PWS but was nevertheless evident. Hence,
we also looked at the individual profiles of neighbouring PWS and noted a significant
misalignment, with a relative shift towards a higher or a lower range denoting either an
overestimation or underestimation of values. In summary, our investigation revealed a
substantial amount of erroneous occurrences, ranging from singular to sequential events.
Such occurrences were equally present over multiple years, stressing the fact that data
quality issues should not be attributed to a single year, rather they are of a much broader
character. Consequently, if not treated in a timely manner, such erroneous occurrences
would introduce a significant bias in inferences drawn from such data and further affect
future empirical and numerical applications relying on these data.

However, it should be noted that there may be some limitations to our study to which
we aim to raise attention. First, the fact that the authoritative observations have been
taken as the absolute truth in terms of quality standards may raise questions regarding
scientific objectivity. Even if tangible arguments supporting such a position exist, we
acknowledge that the observations made by authoritative stations could still have biases
of their own. However, as the information about an actual possible estimated error bar
for the authoritative data is not known at this time, these aspects are not addressed in this
study. Second, even if the spatial distribution of PWS is generally large, the replication
potential of the discussed methodology may be affected by the unavailability of supporting
authoritative data sources at chosen localities.
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