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Abstract

Exploring the relationships between genes, brain circuitry, and behaviour
is accelerated by the joint analysis of a heterogeneous sets form 3D
imaging data, anatomical data, and brain networks at varying scales, res-
olutions, and modalities. Hence, generating an integrated view, beyond
the individual resources’ original purpose, requires the fusion of these
data to a common space, and a visualization that bridges the gap
across scales. However, despite ever expanding datasets, few plat-
forms for integration and exploration of this heterogeneous data exist.
To this end, we present the BrainTACO (Brain Transcriptomic And
Connectivity Data) resource, a selection of heterogeneous, and multi-
scale neurobiological data spatially mapped onto a common, hierarchical
reference space, combined via a holistic data integration scheme. To
access BrainTACO, we extended BrainTrawler, a web-based visual ana-
lytics framework for spatial neurobiological data, with comparative
visualizations of multiple resources for gene expression dissection of
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brain networks with an unprecedented coverage. Using this platform,
allows to straightforward explore and extract brain data for identify-
ing potential genetic drivers of connectivity in both mice and humans
that may contribute to the discovery of dysconnectivity phenotypes.
Hence, BrainTACO reduces the need for time-consuming
manual data aggregation often required for computational anal-
yses in script based toolboxes, and supports neuroscientists
by focusing on leveraging the data instead of preparing it.

Keywords: gene expression, brain connectivity, RNA sequencing, reference
space, mapping

1 Main

An increasing amount of evidence suggest that behaviours, and their impair-
ments in psychiatric disorders, are better accounted by a multimodal data
integration approach than when taking different neurobiological measures sin-
gle handedly [1, 2]. Many insights into brains functional organization and
neuronal mechanism were sparked by collecting and interpreting spatially
organized histology, cellular composition, connectivity and activity data. For
instance, the entry point for modern neuroscientific experimental workflows
are brain regions (part of a specific neuronal circuit thought to be involved
in a brain function or behaviour) whose gene expression and functional con-
nectivity patterns are studied to understand the circuit dynamics underlying
a behaviour. That information can then be used to identify targets in the
brain, that could be modulated by psychoactive drugs, in cases of psychiatric
symptomatology [3].Thus, integrating both functional connectivity and omics
data modalities is instrumental in a better understanding of the biological
underpinnings of behaviours and their deficits [4].

Recent advances in neuroimaging allowed big brain initiatives and consortia
to create vast resources [5–7] of such data, which could be mined for additional
and deeper insights. However, collecting these data from different sources for
comparison and exploration leads to several challenges, as they are acquired
in different systems, and can vary in resolution, anatomical scale, or sampling
density. A mandatory first step is to map the data onto a common reference
space, to ensure alignment (for imaging data) and annotation using the same
brain region ontology [8]. The alternative approach, i.e., mapping the data to
the smallest common denominator, such as major anatomical brain regions
[9], one loses granularity and specificity, rendering the data potentially less
representative.

Neuroscience studies that use a combination of omics, imaging, anatomical,
and connectivity data often require extensive analytical workflows involving,
mapping to a common reference space [8], manual data aggregation [9], and
statistical analysis. This typically requires the expertise of a bioinformatician
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Fig. 1 Mapping data of different resolution and scales to a common reference space. 1)
Voxel-level data is mapped to the voxel-level reference space by image registration. 2).
Region-level data (e.g. RNA-sequencing data) is mapped via a hierarchical brain region
ontology with voxel-level parcellation to the reference space. 3) All data that have been
mapped to the reference space can be either retrieved on the resolution of the reference space
(data is up- or downsampled via nearest-neighbour interpolation), or on every other region
level of the hierarchy.

to find patterns that might relate to a given behaviour [9–16]. The term “big“
refers to the amount (vast image collections, many datasets) and/or size (high
resolution imaging/network data) of the data which is too extensive to anal-
yse with traditional methods. Here, visual analytics tools bridge this gap by
enabling neuroscientists to interactively browse vast data collections, visualize
complex relationships, and link different types of data.

Many neuroscientific resources for transcriptomic data provide interactive,
web-based visualizations for access and exploration. A comprehensive collec-
tion of such websites has been provided by Keil et al. [17]. While providing
access to scientists without the need for advanced computational expertise,
they are primarily suited for single datasets, i.e., they rarely provide work-
flows across multiple datasets and modalities. One notable exception is the
SIIBRA-Explorer via EBRAINS [18] which combines structural connectivity
(fibre tracts) [19] with microarray-based gene expression [20]. Another rele-
vant tool, although not web-based, is BrainExplorer [21, 22], which enables the
retrieval of structural connectivity from the Allen Mouse Brain Connectivity
Atlas [23] in combination with in situ-hybridization data [24]. Nevertheless,
in its current state both SIBBRA-Explorer and BrainExplorer are limited to
one connectivity and one transcriptomic dataset each, and lack support for
next-generation sequencing data.

In this paper, we present a holistic data integration scheme to map hetero-
geneous brain data across scales, spatial and anatomical resolutions, as well as
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sampling and acquisition types (Figure 1). BrainTACO (Brain Transcriptomic
And Connectivity Data) is a resource that includes bulk and single-cell/nucleus
RNA sequencing, in-situ hybridization, and microarray-based transcriptomics
data, as well as structural and functional connectivity mapped onto common
hierarchical reference spaces. To make BrainTACO accessible, we built onto
previous work, BrainTrawler [25], a tool for visualizing volumetric, geome-
try, and connectivity data simultaneously in 3D rendering and 2D slice views,
which can iteratively integrate additional heterogeneous datasets from the
community and across species. We extended BrainTrawler to integrate, store
and query datasets from various resources. Via a previously introduced data
structure based on spatial indexing [26], it enables the automatic aggregation
and interactive exploration in large-scale, high-resolution spatial connectiv-
ity [7, 23], and image collections of gene expression data [24] on different
scales. We extended this data structure to integrate sample-based region-level
datasets (i.e. sampled from a brain region), such as microarray gene expression
data or count matrices from RNA sequencing. Here, it is possible to aggre-
gate samples on individual dataset-level by user-defined regions of interest in
real-time, so that different datasets can be compared on the same anatomical
level, independent of their original resolution and scale.

Via a web interface, BrainTACO can be used to dissect brain connectivity
interactively with a wealth of transcriptomic data, in a similar way as previ-
ously shown by Ganglberger et al. [25] for in-situ hybridization data only. To
account for the increased number of datasets as well as the increased complex-
ity of the datasets itself (e.g. samples from multiple cell types, developmental
states etc.), we added additional comparative exploration. Here, we facilitated
visualization techniques such as heatmaps, small multiples [27], and parallel
coordinates to identify gene expression patterns across datasets and categor-
ical information cell types, phenotypes, developmental stage) interactivity on
arbitrary levels of anatomical detail. This enables neuroscientists a view on the
data, tailored to their research focus, and without the need for programming
knowledge.

This resource closes the gap in current interactive analytical tools by
combining gene expression, structural, and functional relationships at the
microscopic, mesoscopic, and macroscopic level. This is achieved by the
following:

� A data hierarchical brain ontology-based integration scheme to access neu-
robiological, spatially mapped data across resolution, anatomical scale, or
sampling density.

� A collection of publicly available gene expression (in-situ hybridization,
microarray, bulk and single-cell/nucleus RNA sequencing) and connectivity
(structural and functional resting-state) datasets covering major anatomi-
cal brain regions mapped onto common hierarchical reference spaces. The
data’s original annotation is stored and made transparent (data provenance)

� An intuitive web interface for comparative visualization to access the
BrainTACO resource in real-time without programming knowledge.
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2 Results

2.1 Integrating multi-modal multi-scale resources

To create a resource of brain-wide gene expression and connectivity, we mapped
heterogeneous neurobiological spatial datasets to common mouse [28] and
human[29] reference spaces. We included a range of single-cell/nucleus RNA
sequencing datasets (Figure 2) covering both species. While the datasets were
representative of the whole mouse brain [30–36], the gaps in human data
(e. g. Amygdala, Thalamus, Hypothalamus) [9, 34, 37, 38] were filled using
bulk RNA sequencing datasets (Figure 2, GTEx and BrainSpan [39, 40]). The
included datasest were selected to cover a diversity of meta information, such as
morpho-electric cell types (patch sequencing [34]), age information (BrainSpan
[40], Battacherjee at al. [33], Lee et al. [38], and the STAB datasets [9, 37, 41–
51]), or different treatment groups (Rossi et al. [32] and Battacherjee at al.
[33]). ]). To increase spatial resolution, we added in-situ hybridization data
(200 micron voxel-level resolution) [24] and microarray gene expression data
for 3702 biopsy sites [20], both already mapped to the reference spaces.

RNA sequencing datasets were leveraged using TPM (transcripts per
million) for bulk RNA sequencing, and CPM (counts per million) for single-
cell/nucleus RNA sequencing to ensure intra-dataset comparability of gene
expression [52], at the expanse of inter-dataset comparability, which cannot
be assumed due to technical biases [53] and different experimental conditions
and/or sequencing protocols [52]. To circumvent this issue, two steps were
taken. First, we limited the comparison to samples from adult subjects to avoid
confounding due to varying developmental stages [9]. Second, inter-dataset
comparability was assessed on rank level, i.e., whether the general order of
genes by their TPM/CPM was consistent across datasets. Since similar brain
regions were sampled in different datasets (e.g. Battacherjee at al. [33] and
Yao et al. [35]), we computed the Spearman rank-correlation coefficient across
datasets and modalities, which revealed consistent gene expression within spe-
cific cell types across datasets (Figure 3, code and additional information in
Supplementary Data 2 and Supplementary Table 1). For details about the
mapping of the datasets, as well as the preprocessing and normalization, see
the Methods (Section 4.2 and 4.1).

2.2 Mapping to a common reference space

The joint exploration of spatial datasets from different resources requires the
data to be aligned to a common space [8]. This space acts as a reference, so
that spatial locations, such as coordinates or brain region annotations, have
the same meaning across datasets. In neuroscience, commonly used reference
spaces are typically defined by an anatomical reference template [28, 29], a
structural image that has been combined (e.g. via image registration) to a
structural representation of the brain for a group of specimen or a species.
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Imaging data, i.e., data that is divided by a 2D/3D grid into pixels/voxels
that represent measurements at their respective positions, can then be aligned
onto a template by image registration. This involves image transformation and
warping to establish voxel-level correspondence (Figure 1). As at templates
we used the Allen Mouse Brain Coordinate Framework [28] for the mouse
brain (0.1 mm resolution) and the ICBM 152 MNI space template [29] (1 mm
resolution) for their widespread use and availability [54]. In principle, there is
no limitation to specific templates.

For spatial data that is not derived from imaging, i. e., measurements that
have only been generated for specific brain regions, a different approach is
needed. Here, we utilised hierarchical ontologies of brain regions, a formal rep-
resentation of knowledge about the species-specific brain anatomy [55] (Figure
1), i.e., which brain regions it consists of and how these brain regions are
subdivided (hierarchically). The Allen Institute provides ontologies for both
mouse and human [28, 56, 57] that include a mapping onto our respect ref-
erence spaces, i.e., which coordinate of the reference space belongs to which
brain region in the ontology. Since datasets are not necessarily annotated with
the same ontology and on the same hierarchical level, they cannot be com-
pared across anatomical scales and resolution directly. Hence, we matched
brain region annotations to the corresponding brain regions in the ontology. An
outline of this process is shown in Figure 1, details can be found in the Meth-
ods, Section 4.2. Note that these mappings are made explicit in our resource’s
user interface to ensure transparency, and as a consequence, allow for quality
control.

The distributed nature of brain functions across brain networks and gene
sets required adequate exploration of spatial gene expression in the context
of brain structural and/or functional connectivity. We therefore integrated
high-resolution imaging data of structural connectivity (for mouse) [23] and
resting-state functional connectivity (for human) [7]. Structural connectivity
describes how brain areas are physically connected via axonal projections, and
was originally imaged on a 100 micron resolution [23]. The human resting-state
functional connectivity describes brain regions that are linked by correlated
activity. This data originated from the WU-Minn Human Connectome Project
[7]and represents the group-average dense, voxel-level correlation of the resting-
state BOLD-signal of 820 subjects.

2.3 Interactive access and exploration

BrainTrawler was one of the first iterations of an interactive, web-based frame-
work visual analytics framework [25]. Originally, it was designed to explore
large-scale brain connectivity data, such as structural connectivity [23] and to
dissect these connections on gene expression level in the mouse brain. This was
achieved by providing a visual analytics workflow to identify which genes are
expressed in either the source or target regions of these connections, by includ-
ing spatially mapped gene expression data of 20.000 genes of the Allen Mouse
Brain Atlas [24]. Interactivity was achieved by facilitating spatial indexing on
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Fig. 2 Dataset coverage over major anatomical brain regions. Numbers indicate the sample
size/number of images of the datasets in the respective brain regions. Brain region colours
represent the used hierarchical brain ontologies from the Allen Institute. a) Mouse datasets.
b) Human datasets.

volumetric images [58] for the spatially mapped gene expression data, as well
as a data structure for real-time aggregation of connectivity data with billions
of connections [26].

We here build on this effort to handle large-scale transcriptomic datasets
for mouse and human, to not only showing where genes are expressed, but
also how expression differs between cell types and developmental or physio-
logical conditions. Here, we build a spatial database of RNA sequencing and
microarray-based gene expression datasets, including the datasets described in
the previous section. This spatial database utilizes spatial indexing for aggre-
gating gene expression of datasets in real time, that were aligned to brain
regions/voxels of the reference space. To this end, datasets including their
meta data (e.g. cell type annotations, age, phenotype, etc.) were sorted based
on their spatial location in the brain (see Methods, Section 4.4 for details).

The exploration of gene expression related to brain connections works in
an analogous manner as previously presented in Ganglberger et al. [25], see
Figure 4: First, the user defines a volume of interest (VOI ), which can be either
an arbitrary manually defined area, or a brain region (Figure 4a, yellow area).
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Fig. 3 Heatmaps showing the (Spearman rank-based) correlation over all genes of mouse
and human datasets that cover the same brain regions and cell types. Black boxes mark
correlations of the same cell types in different datasets. On average, their correlation is higher
than for not-matching cell types, which indicates that (the ranking of) gene expression is
consistent across datasets (one-sided Wilcoxon test, all p-values≤ 0.05, except mouse visual
areas). Neuronal subtypes in mouse visual areas were already so similar within datasets (all
correlation≥ 0.95), that there was no significant difference across cell types.

For this VOI, a gene expression query can be performed, which computes the
mean expression of all datasets that have been aligned to the reference space
within the VOI or a user-defined filter, i.e., selected meta properties data such
as certain cell types, phenotypes, and others (details in the Methods, Section
4.2).
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Fig. 4 Exemplary gene expression dissection of a structural connection. a) Outgoing struc-
tural connections (red) from a user-selected part of the Thalamus (yellow, representing the
sourceVOI of the connection). b) TargetVOI (yellow) of the structural connections (red). c)
Exemplary gene expression in a parallel coordinates system from the source VOI (red axes,
one for astrocytes in the Zeisel 2018 [36] dataset, one for gene expression in the Lein 2007
dataset) and target VOI (green axes, gene expression in the Lein 2007 dataset, Astrocytes
in the Battacherjee 2019 [33] and Yao 2020 datasets [35]). Every horizontal line represents
a gene, their location on the axes their level of gene expression. A subset of genes with low
astrocytes expression in the source VOI and high Astrocytes expression in the target VOI
was selected as an example.

The result of such a query is a list of genes with the aggregated gene
expression. Figure 4c shows how multiple queries results can then be compared
in a parallel coordinate system, which allows filtering multiple gene lists by
their gene expression. Each axis in the figure represents the result of a gene
expression query, and, as a consequence the level of gene expression in the
query regions. Each horizontal line represents a gene. A selection/filtering of
genes (shown in the table in the lower part of Figure 4c) with specific gene
expression patterns can be made drawing brushes on an axis. Since queries of
different VOI s can be compared, one can use this on the source and target
areas from connectivity data for gene expression dissection. Figure 4a and b
show the aggregated outgoing structural connectivity of the VOI in red. While
the yellow VOI in Figure 4a represents the source, the yellow area in Figure 4b
represents the (strongest) targets of the aggregated connections. A comparison
of the gene expression of source and target VOI can be seen in Figure 4c.
Here, the axes labeled in red are results of gene expression queries at the
source VOI, green ones at the target VOI, performed for different exemplarily
selected datasets and cell types.
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The increasing dataset number and complexity (e.g. samples from mul-
tiple cell types, developmental states, etc.) makes it necessary to perform
large amount of expression queries to cover all available information for genes
of interest. Hence, we extended BrainTrawler’scapability to visualize gene
expression of multiple resources jointly by developing a lightweight interface
(BrainTrawler LITE ). BrainTrawler LITE’s basic user interface element is a
heatmap of the dataset coverage (Figure 5a). Here, each heatmap tile repre-
sents the sample size/image number distribution of a certain dataset (rows) for
a certain brain region (columns), similar to Figure 2. By clicking on heatmap
tile, these data can be selected for further investigation: Either on a gene set
level, by entering a list of genes (Figure 5b), or on a genome-wide level (Figure
5c), analogously to a gene expression query. Results can be exported as images
or as comma/tab-separated files for later use or for sharing. For more details
see Methods, Section 4.3.

2.4 Relating gene expression and connectivity across
species uncovers genes and mechanisms for human
functional connectivity

The functional (FC) and structural connectome (SC) of the brain is viewed
as a major determinant of cognitive function across species. Altered connec-
tion topology and intensity of brain areas are common correlates of psychiatric
conditions such as the autism spectrum and schizophrenia, suggesting that
dysconnectivity might lie at the core of these conditions [59–61]. Alongside,
GWAS studies have discovered genetic loci and polymorphisms associated
with these psychiatric conditions, suggesting that the relationship between the
connectivity of a given brain area and its gene expression likely harbours valu-
able information on wiring principles of the brain [62, 63]. To bridge these
domains, the combination of connectomic and gene expression data is a promis-
ing approach to discover genetic etiologies and emerging mechanisms that
drive regional efferent and afferent connectivity underlying connectopathies,
conditions associated with aberrant brain connection topology [64].

Thus, the increasing abundance of (cell type-specific) gene expression and
connectivity data in the mouse is a promising avenue to discover genetic sus-
ceptibilities and mechanisms affecting the connectome, with great translational
potential. Thus, identifying genetic drivers of FC in humans is of great inter-
est, as it may provide entry points into therapeutic interventions to ameliorate
disease burden.

In the context of psychiatry, the insular cortex is of special interest, as a
core hub in regulating large scale brain networks in humans [65] and rodents
[66], while involved in interoceptive, cognitive and affective processes [67, 68].
Notably, insular functional dysconnectivity is a signature of common psy-
chiatric conditions [69, 70]. We segmented the insula into its agranular and
granular portions, as they are anatomically and functionally distinct [71].
While the posterior granular insula (GI) is a primary sensory area with
rich afferents for interoceptive information, the anterior agranular insula (AI)
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Fig. 5 BrainTrawler LITE interface for comparative visualization of gene expression across
datasets. a) The dataset coverage heatmap shows the distribution of sample size/image num-
ber across brain regions (columns) and datasets (rows), subdivided by meta data attributes
such as cell types, phenotypes, etc. Brain regions and meta data categories can be adapted
via tree-like UI elements on the sides, the tooltip shows the exact composition (sample/im-
age count, meta data categories, etc.) of the respective heatmap tile. Orange tiles shows a
selection of data for gene expression visualization (in b and c). b) Gene expression heatmaps
of five selected genes. Rows and columns represent the selected (orange) tiles in the dataset
coverage heatmap (in a). Colour scales are separated per dataset (between 0 and the max-
imum value shown for all selected genes). The right side shows the expression of genes for
each dataset separately as small multiples, the left side shows one selected gene with more
details (labels, values etc.). Grey tiles are missing data. c) Parallel coordinates system show-
ing the gene expression of all genes in the selected dataset on axes, each representing the
average expression of genes (blue lines) of the samples/images of each selected (orange) tile
in the dataset coverage (in a). Via drawing brushes on the axes, the genes in the parallel
coordinates system can be filtered. Filtered genes are shown below in a table.
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represents an associative area with increasing multimodal integration [67].
Therefore, this system is an ideal model to discover novel genetic factors shap-
ing the connectivity of cortical areas of distinct architecture (agranular vs
granular insula), in a highly relevant translational setting.

First, to allow for optimal cross-species inferences, we selected consensus
areas between the rodent and human brain, covering 10 major subcortical
areas (Supplementary Table 2). Next, source and target connectivity data with
these areas was sampled for the AI (combined ”L Agranular insular area, dor-
sal part” and ” L Agranular insular area, ventral part”) and GI (”L Visceral
area”) (Supplementary Figure 1, left). Because the human ABA does not dis-
cern by granularity, human FC data for AI and GI with the consensus areas
was sampled by brushing agranular and granular areas of the short and long
insular gyri (Supplementary Figure 1, right, according to [72]. Within species
analysis shows a correlation between source and target SC in the mouse GI,
but not in the AI (Figure 6a). Overall, AI and GI connectivity is correlated in
rodents and humans (Supplementary Figure 1a), although to different extents
between sources and targets. Interestingly, human FC is not significantly cor-
related to mouse SC, suggesting relevant functional differences between species
and/or connection modality (Figure 6b).

To assess the relationship between gene expression and connectivity we
extracted expression data of major excitatory and inhibitory cell types of
the 10 subcortical consensus areas for which expression data is available
from Zeisel 2018 [36] (Mouse) and Hawrylycz 2012. [20] (Human) (Supple-
mentary Table 2). These were correlated with FC and SC within humans and
mouse, respectively. This identified for AI 1027/2252 and for GI 1020/1723
significantly (anti-)correlated genes with mouse source/target connectivity,
respectively. For human data we found 330 and 286 significantly (anti-
)correlated genes with FC for AI and GI, respectively (Supplementary Table
3). To identify potential basic driver genes for insular connectivity (i.e. those
conserved across the available mouse structural and human functional connec-
tivity data), we determined the overlap between human and mouse datasets.
This resulted in a total of 30 genes for AI (Figure 6c, left) and 23 genes
for GI across mouse sources and targets (Figure 6c, right; see Supplementary
Figure 2 for source- and target-specific analysis and Supplementary Table 4).
Association analysis for brain-related categories on these genes in Opentar-
gets [73] suggests that they are involved in processes, relevant to psychiatric
conditions (Figure 6d). In this context, our workflow recovers several genes
previously associated with autism (AI: 3 genes; GI: 3 genes) and schizophrenia
(AI: 8 genes; GI: 6 genes) (see Supplementary Table 5). Among the positively
correlated we find attractin-like 1 (ATRNL1) specifically for AI, a gene pre-
viously found to be mutated in a human patient diagnosed with autism [74].
The estrogen receptor 2 (ESR2) is among few genes with a link to schizophre-
nia, to have switched from strongly positive correlation with AI (sources and
targets) and GI connectivity (targets only) in mouse to a strong negative cor-
relation in humans (Supplementary Table 5). However, we find several genes
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Fig. 6 Relating regional gene expression with connectivity across species identifies potential
connectivity driver genes, where cell type-specific analysis reveals a conserved inhibitory
mechanism across species and connection modality. a) Mouse source and target connectivity
is significantly correlated for GI (Spearman r =0.65, p-value = 0.04), but not for AI (r
= 0.08, p-value = 0.82). b) Mouse SC source and target connectivity are not significantly
correlated to Human FC (Spearman; AI: source r = 0.22, p-value =0.54, target r = 0.22,
p-value = 0.54; GI: source r = 0.22, p-value = 0.54, target r = −0.05 , p-value = 0.89).
c) Overlap of genes with expression significantly correlated to connectivity across species
(Mouse SC source/target and Human FC). d) Brain-related associations of overlapping genes
in c (total of 30 genes for AI, 23 genes for GI; see Table 4 for summary). e) Cumulative
distribution of correlation coefficients resulting from the correlation of cell type specific gene
expression and Mouse SC (sources/targets) across excitatory and inhibitory cell types for
AI and GI. Kolmogorov-Smirnoff tests revealed significant differences for AI and GI (p-
value ≤ 0.0001) between excitatory and inhibitory cell types for within source and target
connectivity, respectively. In addition, significant differences (p-value ≤ 0.0001 ) between
source and target connectivity within excitatory and inhibitory neurons, respectively, were
found for both AI and GI. f) Selection of human correlation coefficients with significantly
correlated homologs in the mouse, based on direction of correlation in the mouse dataset
(top: negative, bottom: positive), mouse SC type (left: Sources, right: Targets) and cell type
of origin (color) and connected region (AI, GI). Significance was tested by one-sample t-test
against zero (chance level). ** p-value ≤ 0.01, *** p-value ≤ 0.001, **** p-value ≤ 0.0001.
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previously not linked to brain-related disorders, potentially identifying novel
genetic factors that contribute to dysconnectivity phenotypes.

It is established that brain oscillations are governed by recurrent inhibitory
networks [75], suggesting that genes expressed in inhibitory neurons might
drive FC. To address this systematically, we harnessed the available cell type
specific gene expression data in the mouse as an entry point. We extracted
gene expression data of excitatory and inhibitory cell types from the 10 con-
sensus areas in the mouse using “Cell type specificity” query in the mouse
(Supplementary Table 2). This approach should emphasize cell-type specific
genes and thus enhance contrast between cell types. We next correlated this
cell-type specific gene expression data to the mouse SC of AI and GI (Sources
and Targets) to the consensus areas. Indeed, the majority of significantly cor-
related genes are more specific to inhibitory neurons (Figure 6e). Interestingly,
we noted that the majority of these genes are negatively correlated, suggesting
inhibitory mechanisms might shape mouse SC.

We then tested, whether this principle is conserved across species and con-
nection modalities. First, human correlation coefficients were selected for by
significantly correlated homologs in the mouse dataset, maintaining source/-
target identity and cell type of origin and direction of correlation. This way, a
conserved direction of correlation between species might uncover shared mech-
anisms. These human correlation coefficients were then tested for a deviation
from zero (chance level). Indeed, genes negatively correlating with SC in the
mouse statistically preserve the negative correlation to human FC. This is
most dominant for genes negatively correlating with mouse source connectivity
(Figure 6f, top left), and specific to AI for genes from mouse target connec-
tivity (Figure 6f, top right). Interestingly, this pattern is absent when using
mouse SC positively correlated genes, suggesting specificity for a conserved
inhibitory mechanism (Figure 6f, bottom). Among the strongest hits we found
is TNF superfamily member 12 member C (TNFSF12), a gene dysregulated
in patients diagnosed with various psychiatric disorders [76–78] .

In summary, despite the fact that the correlation of human FC and mouse
SC does not reach significance (Figure 6b), this workflow uncovered a preserved
relationship between gene expression and connectivity across species and con-
nection modality. This may further allow to mine for (cell type-specific) genes
and mechanisms driving FC in humans.

3 Discussion

Our platform has several implications for both basic and biomedical research.
We created a discovery framework that utilizes data from current popular
large-scale genetic and brain network initiatives to rapidly screen for neu-
ral circuitry underlying specific brain functions, behaviours, or psychiatric
symptoms at comparably low computing costs. The computational screen-
ing complements, and may direct subsequent, circuit-genetic experiments such
as electrophysiology, opto-, and pharmacogenetics. When performed at large
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scale with behaviour-specific genes, our approach has the potential to refine
the functional organization of the brain beyond simple anatomical domains.
Importantly, our methodology for generating and exploiting the resource could
be applied to other model organisms for which spatially mapped gene expres-
sion, network, and genetic information is, or will be, available, for example
fruit flies or zebrafish. Using this platform, we showcase this by uncovering a
preserved relationship between gene expression and connectivity across species
and connection modality. We explored this in excitatory and inhibitory cell
types, and identified several genes that were previously not linked to brain-
related disorders, potentially identifying novel cell type-specific factors that
contribute to dysconnectivity phenotypes.

Inevitably, BrainTACO has some limitations. First of all, in its current
state it does not cover the full brain on a single-cell/nucleus level. To provide
a resource as versatile as possible, we focused on covering the brain at least on
the level of most major anatomical brain regions, so that neuroscientists will
likely find data related to their research focus. This was not entirely possible
for human datasets (e. g. Amygdala, Thalamus, Hypothalamus) due to a lack
of studies covering these areas. In principle, BrainTACO is not static, and can
be extended with new datasets. Future studies, as well as further improvements
of technologies such as spatial transcriptomics will help to close this gap.

Another limitation is that it is in general not reasonable to compare (abso-
lute) gene expression values, even normalized ones (e.g. TPM, CPM) across
datasets [52, 53]. We circumvent this issue by providing dataset-specific colour
scales for gene expression heatmaps, and advise to compare absolute gene
expression only relative to other genes within the same dataset. As an alter-
native, we provide gene ranks for gene expression queries, i.e., their relative
position in a list of genes sorted by their expression. Furthermore, the com-
puted mean expression, region and cell type specificity or enrichment scores
do not include information about the spread of the data, which is typical for
traditional analytical approaches, such as t-SNE plots. Hence, it is not known
how homogenous the expression is across the selected datasets, for example
for a certain cell type. We knowingly limited analytical power for the sake
of simplicity, cornerstone of BrainTrawler, whose mission is to enable compu-
tationally agnostic neuroscientists to run complex analysis. Nevertheless, an
integration of more sophisticated, in-depth analyses might be considered for
future releases.

The user interface provides sufficient visualization for the scope of our
case studies, i.e. the number of queries, datasets and genes did not exceed
BrainTrawler’s capabilities. In general, there is no limit regarding how many
genes, datasets or query results can be visualized, but outside typical analytical
workflows, such as our case study, there are some issues regarding the user
interface: The parallel coordinates system does not scale well to more than
twenty queries, for there is not enough space in a typical browser window. The
same is true for visualizing the expression of hundreds of genes in BrainTrawler
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LITE’s gene expression heatmaps, for you simply loosing the overview when
scrolling is needed.

Overall, the integration of heterogeneous gene expression and connectivity
data from mouse and human into BrainTrawler is a powerful resource for
hypothesis building in the field of behavioural/functional neuroscience and for
drug target identification. Its coverage of RNA sequencing data, especially
on a single-cell/nucleus level for the majority of brain regions, only limited
by the public availability of the data, enhances BrainTrawler’s capabilities
of investigating molecular mechanisms. By making the BrainTACO resource
available via visual analytics workflows in the web, we enable quick access
without manual data aggregation via scripting, and consequently without the
expertise of a bioinformatician. Future integration of novel spatial datatypes,
such as spatial transcriptomics, has the potential to make this resource even
more versatile.

4 Methods

4.1 Data Preprocessing and Normalization

� Single-Cell/Nucleus RNA Sequencing Data: We integrated 21 single-
cell/nucleus RNA sequencing datasets in total, 7 mouse datasets, and 14
human. Out of the 14 human datasets, 12 are from the Song et al. [9]
meta dataset STAB available from http://stab.comp-sysbio.org. STAB con-
sists of 13 datasets [37, 41–51], for which we omitted the dataset by Hodge
et al. [37] and downloaded the data from Hodge et al.’s original resource
(http://celltypes.brain-map.org/rnaseq), since it had been extended by sev-
eral brain regions after STAB’s submission (primary motor cortex, primary
somatosensory cortex, and primary auditory cortex). The other single-
cell/nucleus RNA sequencing datasets were obtained by the information in
the data availability statements in their referenced publication.
STAB datasets were not further preprocessed, filtered and normalized, since
this has been already done consistent across its 12 datasets [9]. The other
single-cell/nucleus RNA sequencing datasets were pre-processed with the
Seurat (v4.1.0) R package [79] to remove batch effects. Low-quality cells,
empty droplets, and doublets were removed with low (less then 50) or high
(more than 5000) unique gene counts, or if their unique gene counts were
outliers (lower or higher five times the median absolute deviation from the
median). Final cell counts can be seen in Table 1 (Filtered Cell Counts).
Note, that most available datasets were already filtered by similar criteria,
which explains the similar or close original and filtered cell counts. Cells that
could not be matched to brain regions were removed, which was only the
case for samples from the medial ganglionic eminence (transient structure
in the developmental brain) in the Nowakowski et al. [41] data from STAB.
Genes without cell counts across the datasets where removed, since they do
not show biological variability. Genes were then matched by gene symbol,
ensemblid or entrezid to BrainTrawler’s gene database, which was obtained
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Dataset Species
Original

Cell Counts
Filtered

Cells Counts
Matched

Genes
Gokce 2016 Mouse 1208 1208 17077
Campbell 2017 Mouse 20921 14995 29579
Rossi 2019 Mouse 20194 19391 23613
Bhattacherjee 2019 Mouse 35360 35360 15720
Yao 2021 Mouse 74974 74676 36549
Gouwens 2020 Mouse 4270 4067 34846
Zeisel 2018 Mouse 160796 135626 22752
Lee 2020 Human 125468 70718 30191
Hodge 2019 Human 49417 47432 40180
Song 2020 Nowakowski 2017 Human 4261 921 23830
Song 2020 Darmanis 2015 Human 466 416 23830
Song 2020 Zhong 2018 Human 2394 2005 23830
Song 2020 Fan 2018 Human 4664 3916 23830
Song 2020 Li 2018 Part1 Human 1512 701 23830
Song 2020 Li 2018 Part2 Human 17093 16840 23830
Song 2020 Lake 2017 Human 36166 33862 23830
Song 2020 La Manno 2016 Human 1977 1869 23830
Song 2020 Habib 2017 Human 11859 10747 23830
Song 2020 Welch 2019 Human 40453 39447 23830
Song 2020 Liu 2016 Human 276 252 23830
Song 2020 Onorati 2016 Human 1608 476 23830

Table 1 Original Cell Counts of the retrieved datasets, filtered cell counts after
preprocessing, and genes matched to BrainTrawler’s gene database

via the Genome wide annotation for mouse [80] and human [81] via the
bioconductor package. The amount of matches can be seen in Table 1. For
each gene, expression levels were normalized by computing CPM (counts
per million) to ensure intra-dataset comparability of gene expression [52].
For better readability/interpretability, CPM was log2 normalized (using an
offset of 1 to account for zeros).

� Bulk RNA-Sequencing Data: To fill gaps in subcortical single-
cell/nucleus RNA sequencing availability for the human, we integrated two
bulk RNA sequencing datasets from the GTEx and BrainSpan consor-
tia [39, 40]. GTEx data was downloaded from the GTex portal (https:
//gtexportal.or) in the version 8 as gene TPM (transcripts per million).
BrainSpan data was obtained from the BrainSpan portal (https://www.
brainspan.org/) as normalized RPKM (reads per kilobase of transcript)
expression values, and converted to TPM according to Zhao et al. [52]. log2
normalization (using an offset of 1 to account for zeros) was applied to both
datasets similar to single-cell/nucleus RNA sequencing data.

� Microarray Gene Expression Data: Microarray gene expression data
was retrieved from the Allen Human Brain Atlas by Hawrylycz et al. [20] via
the Allen Brain Atlas API (https://api.brain-map.org/). This data assem-
ble gene expression from 3702 samples of six donors, labelled with their
according brain region in the ontology provided by the Allen Institute [56],
which ensures equivalent scaling across donors. We normalized gene expres-
sion values based on an outlier-robust sigmoid function, before rescaling the
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normalized values to a unit interval (0-1), as suggested by Arnatkevic̆iūtė et
al. [82].

� In-situ Hybridization Data: Whole-brain gene expression in situ
hybridization data was retrieved from the Allen Brain Atlas API (https:
//api.brain-map.org/) as volumetric images for 19479 genes. To create these
volumetric images, the Allen Brain Atlas divides the in situ hibridization
slice images on cellular resolution into a 200 micron resolution grid. For each
grid division, expression energy was computed, i.e. the sum of the expres-
sion intensity of all pixels within the division, divided by the sum of pixels
within the division [83]. The expression energy for each grid division rep-
resent then a 200 micron resolution volumetric images. To make this data
available in BrainTrawler, we log2 normalized the data and encoded them
as 8 bit volumes, with a size of 155KB each (∼ 3GB in total).

� Structural Connectivity Data: Structural connectivity was generated
similar to previous publications [25, 26, 84]. Here, the connectivity was
retrieved from the Allen Brain Atlas API (https://api.brain-map.org/) as
volumetric images, showing structural connectivity of 2173 injection sites to
their target sites [23]. These 2173 images were generated on a 100 micron res-
olution by labelled rAAV tracers via serial two-photon tomogagraphy [23].
For each image, the injection site is given by coordinates in the reference
space defined by the Allen Mouse Brain Coordinate Framework [28], and an
injection volume, depicting the volume around the injection site affected by
the tracer. Hence, the connectivity for an injection site is defined by the all
voxels within its injection volume. For every voxel in the reference space, we
took the connectivity from the covering injection volume. If a voxel was cov-
ered by multiple injection volumes, i.e., and therefore by multiple injection
sites, we combined them by taking the maximum connectivity for each tar-
get. To compensate for low count of injection sites on the left hemisphere,
we mirrored the connectivity, effectively inflating the original 2173 injection
sites to the double, i.e., 4346. To minimize the amount of false positive con-
nections, the data was thresholded by values < 10−4.5 according to Oh et al.
[23], Extended Data Figure. The result was a dense ∼ 67500×500000 struc-
tural connectome (∼ 67500 source voxel covering injection volumes with
∼ 500000 target voxels within the mouse brain), with ∼ 90GB stored in a
csv format.

� Resting-State Functional Connectivity Data: Resting-state functional
connectivity data was downloaded from the WU-Minn Human Connec-
tome Project [7] via the CONNECTOMEdb (https://db.humanconnectome.
org/). The data was available as average functional connectivity matrix of
820 subjects, given as dense∼ 90000×90000 functional connectome in “gray-
ordinate” space [7], where a grayordinate is either a voxel (subcortical gray
matter) or a surface vertex (cerebral cortex). To transform this matrix into
the ICBM 152 MNI space [29] (1mm resolution), we used the Connectome
Workbench platform [7] to retrieve the closest grayordinates (within 1mm)
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to every voxel in ICBM 152 MNI space. By computing the average connec-
tivity of all close grayordiantes for each voxel, we were able to create a dense
∼ 87000× 87000 functional connectome, with ∼ 45GB stored as csv.

4.2 Data Mapping and Querying

Imaging data that is shown in this paper, namely in-situ hybridization data
[24], axonal projection connectivity [23] and resting state functional connec-
tivity [7] was already aligned to the reference spaces used for this resource
[28, 56, 57]. Novel datasets could be aligned via tools such as the QUINT work-
flow [85] or the ANTS frame work [86]. Data that does not meet the resolution
of the reference space, is up- or downsampled via nearest-neighbour interpo-
lation. This was the case for the in-situ hybridization data, which has a lower
resolution (200 microns) than the Allen Mouse Brain Coordinate Framework
[28] (100 micron resolution).

Region-level data, such as microarray gene expression data and RNA
sequencing data are typically encoding gene expression as count matrix [87],
depicting the frequency of gene transcripts for samples. For dataset included in
this study, these samples originatee from brain regions. We mapped these brain
regions to the corresponding brain regions of our reference ontology (Allen
Brain Institute Atlases) manually based on the region name and description
in the dataset’s reference publication. To ensure transparency, and hence qual-
ity control, the detailed mappings are available in the resource’s user interface
(Browse Database, then select a dataset to see details such as the dataset’s
mapping), and in the supplemental material.

The process of mapping region-level data to, and retrieving it from a ref-
erence space is outlined exemplarily in Figure 7, code for the mapping can be
found in Supplementary Data 1. In this example, these data are samples from
the Thalamus and Hypothalamus (Figure 7a). Since the ontology maps to the
corresponding voxels of the reference space, each voxel can be related to sam-
ples that originated from the voxel’s brain region. The hierarchical nature of
the ontology enables the querying of gene expression on multiple anatomical
levels. For example, querying the average gene expression in the Diencephalon,
the parent region of Thalamus and Hypothalamus, will aggregate over all sam-
ples of the count matrix (Figure 7b) , while a query on the Thalamus or a
subregion of the Thalamus (e.g. Dorsal Thalamus) will result in an aggregation
over the thalamic samples (Figure 7c). We want to point out, that thalamic
sample do not necessarily represent dorsal thalamic samples, hence we make
the samples origin explicit in our resource’s user interface (Figure 5a, “Sample
Region Annotations”).

We implemented four different variants of gene expression queries to cover
different use cases, such as region-specificity or enrichment. Theses queries
were defined on a gene expression matrix of dataset d as

Md = (md
g,s)g∈G,s∈S,M

d ∈ R|G|×|S| (1)
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Fig. 7 Mapping of exemplary RNA sequencing data to, and retrieving from a common
reference space. a) Samples of the Thalamus (green) and Hypothalamus (brown) of an
exemplary RNA sequencing count matrix are mapped manually to a brain regions in an
hierarchical ontology via literature research. Since mapping of the ontology to the reference
space is known, samples can be mapped to individual voxels of the reference space, and
hence to every anatomical level in the ontology. b)Aggregating the average gene expression
for all samples from a coarser anatomical level (Diencephalon) than the original annotations
(Thalamus and Hypothalamus). c) Aggregating the average gene expression for all samples
from a equal or finer anatomical level (Thalamus or Dorsal Thalamus) than the original
annotations (Thalamus) leads to he same results.

where each row represents a gene g ∈ G and each column a sample (or a voxel
in case of imaging data) s ∈ S. V ⊆ S represent all samples within the VOI,
C ⊆ S samples of a certain cell type, and F ⊆ S a samples filtered by meta
data other than cell types.

� Mean Expression Query: Computing the mean gene expression within
the VOI for each gene g

meanexpression(g) =
1

|V ∩C ∩ F|
∑

s∈(V∩C∩F)

mg,s (2)
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� Region Specificity Query: To account for regional specificity, we compute
for each gene g the mean gene expression within the VOI, and normalize it
to the mean expression of the rest of the brain:

regionspecificity(g) =

1
|V∩C∩F|

∑
s∈(V∩C∩F) mg,s

1
|C∩F|

∑
s∈(C∩F) mg,s

(3)

� Cell type Specificity Query: This query can be used to see how specific
the expression of a certain cell type is. In this case, for each gene g, the mean
gene expression within the VOI is computed for all samples of a certain cell
type C ⊆ S, and normalized by the expression over samples of all cell types
within the VOI :

celltypespecificity(g) =

1
|V∩C∩F|

∑
s∈(V∩C∩F) mg,s

1
|V∩F|

∑
s∈(V∩F) mg,s

(4)

� Enrichment Query: This query can be used to see how specific the expres-
sion is for cell types C ⊆ S or different meta data F ⊆ S. In this case,
the mean gene expression within the VOI is computed for all samples of
the selected filter and cell type, and normalized by the expression over all
samples within the VOI :

enrichment(g) =

1
|V∩C∩F|

∑
s∈(V∩C∩F) mg,s

1
|V|

∑
s∈(V) mg,s

(5)

4.3 BrainTrawler LITE

The basis of BrainTrawler LITE is the dataset coverage heatmap, showing the
distribution of samples/images across brain regions (columns) and datasets
(rows), subdivided by meta data categories such as cell types, phenotypes etc
(Figure 5a). Regions can be dynamically set via a tree-like structure showing
the brain ontology (Figure 5a, left). Datasets can be subdivided by their meta-
data categories (e.g. split by cell types) on the right side (Figure 5a, right),
so that the rows do not only represent datasets, but also subsets thereof, e.g.
a row for each cell type per dataset. Hovering over the individual tiles of the
heatmap reveals a summary of the data for the respective brain region and
dataset (or subset of the dataset), for example sample count and the original
region annotation of the data. The original region annotation is especially rel-
evant to identify the data’s origin, and hence, the data’s potential relevance
for the user.

In the first case (Figure 5b), one gene expression heatmap is generated for
each of the entered genes. Here, a gene expression heatmap shows the aver-
aged expression for all samples/images covered by each of the selected tiles
in the dataset coverage heatmap. This means, that if the user selects a tile
in the dataset coverage heatmap of a certain brain region, and a certain cell
type of a certain dataset, each gene expression heatmap will contain the same
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Fig. 8 Concept of how a selection in the dataset coverage heatmap transfers to gene expres-
sion heatmaps and the parallel coordinates system. Each tile represents a subset of the
resource, i.e., samples/images of a certain brain region of a certain dataset (and of a certain
meta data category). Each selected tile (orange) has a direct representation as tile in the
gene expression heatmap (a) and as axis in the parallel coordinates system (b). The values
in (a) and (b) are the averaged expression values (e.g. CPM, TPM etc.) over all samples/im-
ages represented by the selected tile. Tiles without samples (missing data) are rendered grey
in (a), or omitted for (b).

tile, showing the averaged expression of all the tile’s covered samples/images
(Figure 8a). To deal with gene lists with dozens of genes, we used a small
multiples visualization [27], (Figure 5b, right) so one can visually identify pat-
terns while maintaining an overview. Clicking on individual gene heatmaps
will show a detailed view on the left hand side (Figure 5c, left), displaying the
exact expression values and row/column labels. The colouring is set by indi-
vidual colour scales per dataset (same colour, but the range depends on the
datasets maximum value), since, as already mentioned before, values are not
directly comparable across datasets.

In the case of investigation on a genome level (Figure 5c), a parallel coordi-
nates system is used analogue to the dissection of connections shown in Figure
4. Here, each line represents a gene, indicating the averaged expression along
axes for each selected tile (Figure 8b). Genes can be filtered drawing brushes
on an axis (Figure 5c) to find genes with specific gene expression patterns.

4.4 Spatial Indexing

Real-time queries on the resource’s data was achieved by spatial indexing,
depending on the datatype:
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� Connectivity Data: For real-time aggregation of connectivity data with
billions of connections, we used the data structure introduced by Gan-
glberger et al. in 2019 [26]. Here, in principle the query speed is reached
by sorting rows and columns of a connectivity matrix by their location in
space along a space filling curve [88], so that rows and columns that repre-
sent connections that are close together in the 3D reference space are also
close together in the matrix. This makes reading local connectivity (e.g.
the connectivity of a brain region) from the hard-drive extremely efficient,
since it benefits from read-ahead paging of the operating system to reach
near-sequential reading speed [26].

� Imaging Data: For computing the mean expression of a volume of interest
(VOI ), for example a brain region, we used spatial indexing on volumetric
images similar to Schulze [58]. Here, the imaging data are not stored per
image, but per voxel: For each voxel in the reference space, the data of all
images at the voxel’s position are stored together (i.e. on the physical hard-
drive). Furthermore, we order these per-voxel data along a space filling curve
[88], which allows data points in close proximity in the 3D reference to be
stored in close proximity as well on the storage. The expression of the voxels
of a VOI can then be read block-wise from the hard-drive, which is more
efficient than reading each image individually due to read-ahead paging of
the operating system [58].

� Sample-based Data: For sample-based data, such as RNA sequencing and
microarray gene expression data, we used a similar approach as for imaging
data. Here, for each sample in our resource, we used the sample’s mapping
to the reference space (Section 2.2) to get the sample’s location. Based on
these locations, we order samples along a space filling curve and stored them
on the hard-drive. This means, that if a certain VOI is queried for gene
expression, all relevant samples of all datasets are stored close-together. As
a consequence, they can be retrieved block-wise, benefiting from read-ahead
paging of the operating system similar to the connectivity and imaging data
approaches. We further optimized the queries by pre-aggregating samples
with similar meta data, i.e. samples of the same dataset, cell type, age
category etc. This significantly increases the query speed, since the amount
of data that need to be aggregated on-the fly is reduced from thousands of
individual samples to a tenth or even a hundredth of it (depending on the
extend of the query).

4.5 Data Availability

BrainTrawler including the BrainTACO resource can be accessed after publi-
cation in a peer-reviewed journal. Code for the mapping and data generation
is provided in Supplementary Data 1.
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Figures 6 and 6)
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Supplementary Table 5: Association summary (related to Figure 6)
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and mouse (related to Figure 6)

References

[1] Koch, C. The Quest for Consciousness: A Neurobiological Approach
Vol. 19 (Roberts & Company Publishers, 2004).

[2] Kindt, M. A behavioural neuroscience perspective on the aetiology and
treatment of anxiety disorders. Behaviour Research and Therapy (2014) .

author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review) is the2023. 

this version posted April 19,; https://doi.org/10.1101/2023.04.18.537294doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537294


Springer Nature 2021 LATEX template

Ganglberger et al 2023 25

[3] Griessner, J. et al. Central amygdala circuit dynamics underlying the
benzodiazepine anxiolytic effect (2018).

[4] Young, L. J. & Wang, Z. The neurobiology of pair bonding. Nature
neuroscience 7 (10), 1048–1054 (2004) .

[5] Allen institute, https://www.alleninstitute.org/ (2019).

[6] Human brain project, https://www.humanbrainproject.eu (2019).

[7] Van Essen, D. C., Smith, S. M., Barch, D. M. et al. The wu-minn human
connectome project: an overview. Neuroimage 80, 62–79 (2013) .

[8] Markello, R. D. et al. neuromaps: structural and functional interpretation
of brain maps. Nature Methods 19 (2022) .

[9] Song, L. et al. Stab: A spatio-temporal cell atlas of the human brain.
Nucleic Acids Research 49 (2021) .

[10] French, L. & Pavlidis, P. Relationships between gene expression and brain
wiring in the adult rodent brain. PLoS Computational Biology 7 (1)
(2011) .

[11] Ji, S., Fakhry, A. & Deng, H. Integrative analysis of the connectivity
and gene expression atlases in the mouse brain. NeuroImage 84, 245–253
(2014) .

[12] Richiardi, J. & Altmann, A. Correlated gene expression supports syn-
chronous activity in brain networks. Science 348 (6240), 11–14 (2015)
.

[13] Rubinov, M., Ypma, R. J. F., Watson, C. & Bullmore, E. T. Wiring cost
and topological participation of the mouse brain connectome. Proceedings
of the National Academy of Sciences 112 (32), 201420315 (2015) .

[14] Whitaker, K. J. et al. Adolescence is associated with genomically
patterned consolidation of the hubs of the human brain connectome. Pro-
ceedings of the National Academy of Sciences 113 (32), 9105–9110 (2016)
.

[15] French, L., Tan, P. P. C. & Pavlidis, P. Large-Scale Analysis of Gene
Expression and Connectivity in the Rodent Brain: Insights through Data
Integration. Frontiers in neuroinformatics 5, 12 (2011) .

[16] Fulcher, B. D. & Fornito, A. A transcriptional signature of hub connec-
tivity in the mouse connectome. Proceedings of the National Academy of
Sciences 113 (5), 1435–1440 (2016) .

author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review) is the2023. 

this version posted April 19,; https://doi.org/10.1101/2023.04.18.537294doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537294


Springer Nature 2021 LATEX template

26 Ganglberger et al 2023

[17] Keil, J. M., Qalieh, A. & Kwan, K. Y. Brain transcriptome databases: A
user’s guide. Journal of Neuroscience 38 (2018) .

[18] Siibra-explorer, https://atlases.ebrains.eu/viewer/ (2019).

[19] Caspers, S. & Schreiber, J. 1000brains study, connectivity data (v1.1)
(2021).

[20] Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L. et al. An
anatomically comprehensive atlas of the adult human brain transcrip-
tome. Nature 489 (7416), 391–399 (2012) .

[21] Lau, C. et al. Exploration and visualization of gene expression with neu-
roanatomy in the adult mouse brain. BMC Bioinformatics 9 (1), 153
(2008) .

[22] Feng, D. et al. Exploration and visualization of connectivity in the adult
mouse brain. Methods 73, 90–97 (2015) .

[23] Oh, S. W., Harris, J. A., Ng, L. et al. A mesoscale connectome of the
mouse brain. Nature 508 (7495), 207–214 (2014) .

[24] Lein, E. S., Hawrylycz, M. J., Ao, N. et al. Genome-wide atlas of gene
expression in the adult mouse brain. Nature 445 (7124), 168–176 (2007) .

[25] Ganglberger, F. et al. Braintrawler: A visual analytics framework for iter-
ative exploration of heterogeneous big brain data. Computers & Graphics
82, 304 – 320 (2019) .

[26] Ganglberger, F., Kaczanowska, J., Haubensak, W. & Bühler, K. A
data structure for real-time aggregation queries of big brain networks.
Neuroinformatics 1–19 (2019) .

[27] Tufte, E. Envisioning Information (Graphics Press, USA, 1990).

[28] Wang, Q. et al. The allen mouse brain common coordinate framework: A
3d reference atlas. Cell 181 (2020) .

[29] Fonov, V. et al. Unbiased average age-appropriate atlases for pediatric
studies. NeuroImage 54, 313–327 (2011) .

[30] Gokce, O., Stanley, G. M., Treutlein, B. et al. Cellular Taxonomy of
the Mouse Striatum as Revealed by Single-Cell RNA-Seq. Cell Reports
16 (4), 1126–1137 (2016) .

[31] Campbell, J. N., Macosko, E. Z., Fenselau, H. et al. A molecular census
of arcuate hypothalamus and median eminence cell types 4, 4 (2017) .

author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review) is the2023. 

this version posted April 19,; https://doi.org/10.1101/2023.04.18.537294doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537294


Springer Nature 2021 LATEX template

Ganglberger et al 2023 27

[32] Rossi, M. A., Basiri, M. L., McHenry, J. A. et al. Obesity remodels activ-
ity and transcriptional state of a lateral hypothalamic brake on feeding.
Science 364 (6447) (2019) .

[33] Bhattacherjee, A., Djekidel, M. N., Chen, R. et al. Cell type-specific
transcriptional programs in mouse prefrontal cortex during adolescence
and addiction .

[34] Gouwens, N. W., Sorensen, S. A., Baftizadeh, F., Budzillo, A. et al.
Toward an integrated classification of neuronal cell types: Morphoelec-
tric and transcriptomic characterization of individual GABAergic cortical
neurons. (2020).

[35] Yao, Z., Nguyen, T. N., van Velthoven, C. T. J. et al. A Taxonomy of Tran-
scriptomic Cell Types Across the Isocortex and Hippocampal Formation.
SSRN Electronic Journal (2020) .

[36] Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell
174 (2018) .

[37] Hodge, R. D., Bakken, T. E., Miller, J. A. et al. Conserved cell types
with divergent features in human versus mouse cortex. Nature 573 (7772)
(2019) .

[38] Lee, H., Fenster, R. J., Pineda, S. S. et al. Cell Type-Specific Transcrip-
tomics Reveals that Mutant Huntingtin Leads to Mitochondrial RNA
Release and Neuronal Innate Immune Activation. Neuron 107 (5) (2020)
.

[39] Aguet, F. et al. The gtex consortium atlas of genetic regulatory effects
across human tissues. Science 369 (2020) .

[40] Miller, J. A., Ding, S. L., Sunkin, S. M. et al. Transcriptional landscape
of the prenatal human brain. Nature 508 (7495) (2014) .

[41] Nowakowski, T. J. et al. Spatiotemporal gene expression trajectories
reveal developmental hierarchies of the human cortex. Science 358 (2017)
.

[42] Darmanis, S. et al. A survey of human brain transcriptome diversity at
the single cell level. Proceedings of the National Academy of Sciences of
the United States of America 112 (2015) .

[43] Zhong, S. et al. A single-cell rna-seq survey of the developmental
landscape of the human prefrontal cortex. Nature 555 (2018) .

author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review) is the2023. 

this version posted April 19,; https://doi.org/10.1101/2023.04.18.537294doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537294


Springer Nature 2021 LATEX template

28 Ganglberger et al 2023

[44] Fan, X. et al. Spatial transcriptomic survey of human embryonic cerebral
cortex by single-cell rna-seq analysis. Cell Research 28 (2018) .

[45] Li, M. et al. Integrative functional genomic analysis of human brain
development and neuropsychiatric risks. Science 362 (2018) .

[46] Manno, G. L. et al. Molecular diversity of midbrain development in mouse,
human, and stem cells. Cell 167 (2016) .

[47] Habib, N. et al. Massively parallel single-nucleus rna-seq with dronc-seq.
Nature Methods 14 (2017) .

[48] Welch, J. D. et al. Single-cell multi-omic integration compares and
contrasts features of brain cell identity. Cell 177 (2019) .

[49] Liu, S. J. et al. Single-cell analysis of long non-coding rnas in the
developing human neocortex. Genome Biology 17 (2016) .

[50] Onorati, M. et al. Zika virus disrupts phospho-tbk1 localization and mito-
sis in human neuroepithelial stem cells and radial glia. Cell Reports 16
(2016) .

[51] Lake, B. B. et al. Integrative single-cell analysis of transcriptional and
epigenetic states in the human adult brain. Nature Biotechnology 36 (1)
(2018) .

[52] Zhao, S., Ye, Z. & Stanton, R. Misuse of rpkm or tpm normalization when
comparing across samples and sequencing protocols. RNA 26 (2020) .

[53] Evans, C., Hardin, J. & Stoebel, D. M. Selecting between-sample rna-
seq normalization methods from the perspective of their assumptions.
Briefings in bioinformatics 19 (2018) .

[54] Ose, T. et al. Anatomical variability, multi-modal coordinate systems,
and precision targeting in the marmoset brain. NeuroImage 250 (2022) .

[55] Larson, S. D. & Martone, M. E. Ontologies for Neuroscience: What are
they and What are they Good for? Frontiers in neuroscience 3 (1), 60–67
(2009) .

[56] Ding, S. L. et al. Comprehensive cellular-resolution atlas of the adult
human brain. Journal of Comparative Neurology (2016) .

[57] Ding, S.-L. et al. Allen Human Reference Atlas – 3D, 2020.
RRID:SCR 017764 (2020).

[58] Schulze, F. Computational Methods enabling Interactivity in Analysis and
Exploration of Volumetric Images. Ph.D. thesis, Institute of Computer

author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review) is the2023. 

this version posted April 19,; https://doi.org/10.1101/2023.04.18.537294doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537294


Springer Nature 2021 LATEX template

Ganglberger et al 2023 29

Graphics and Algorithms, Vienna University of Technology, Favoriten-
strasse 9-11/E193-02, A-1040 Vienna, Austria (2013). URL https://www.
cg.tuwien.ac.at/research/publications/2013/Schulze Florian 2013 CMI/.

[59] Hong, S.-J. et al. Toward neurosubtypes in autism. Biological Psy-
chiatry 88 (1), 111–128 (2020). Convergence and Heterogeneity in
Psychopathology .

[60] Fornito, A., Zalesky, A. & Breakspear, M. The connectomics of brain
disorders. Nature Reviews Neuroscience 16 (3), 159–172 (2015) .

[61] Fornito, A. & Bullmore, E. T. Reconciling abnormalities of brain network
structure and function in schizophrenia. Current Opinion in Neurobiology
30, 44–50 (2015). SI: Neuropsychiatry .

[62] Ripke, S. et al. Biological insights from 108 schizophrenia-associated
genetic loci. Nature 511 (7510), 421–427 (2014) .

[63] Jeste, S. & Geschwind, D. Disentangling the heterogeneity of autism
spectrum disorder through genetic findings. Nature reviews. Neurology
10 (2014) .

[64] Zerbi, V. et al. Brain mapping across 16 autism mouse models reveals a
spectrum of functional connectivity subtypes (2020) .

[65] Sridharan, D., Levitin, D. J. & Menon, V. A critical role for the
right fronto-insular cortex in switching between central-executive and
default-mode networks. Proceedings of the National Academy of Sciences
105 (34), 12569–12574 (2008) .

[66] Menon, V. et al. Optogenetic stimulation of anterior insular cortex neu-
rons in male rats reveals causal mechanisms underlying suppression of the
default mode network by the salience network. Nature Communications
14, 866 (2023) .

[67] Craig, A. How do you feel—now? the anterior insula and human
awareness. Nature reviews. Neuroscience 10, 59–70 (2009) .

[68] Gogolla, N. The insular cortex. Current Biology 27 (12), R580–R586
(2017) .

[69] Sheffield, J. M., Rogers, B. P., Blackford, J. U., Heckers, S. & Wood-
ward, N. D. Insula functional connectivity in schizophrenia. Schizophrenia
Research 220, 69–77 (2020) .

author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review) is the2023. 

this version posted April 19,; https://doi.org/10.1101/2023.04.18.537294doi: bioRxiv preprint 

https://www.cg.tuwien.ac.at/research/publications/2013/Schulze_Florian_2013_CMI/
https://www.cg.tuwien.ac.at/research/publications/2013/Schulze_Florian_2013_CMI/
https://doi.org/10.1101/2023.04.18.537294


Springer Nature 2021 LATEX template

30 Ganglberger et al 2023

[70] Nomi, J. S., Molnar-Szakacs, I. & Uddin, L. Q. Insular function in
autism: Update and future directions in neuroimaging and interven-
tions. Progress in Neuro-Psychopharmacology and Biological Psychiatry
89, 412–426 (2019) .

[71] Geuter, S., Boll, S., Eippert, F. & Büchel, C. Functional dissociation of
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